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nature of dialogue and the topic shift mechanisms that are different from monologue. It examines how the
information contributions from the two dialogue partners interactively evolve as the discourse develops. The
increase of local sentence-level information density (predicted by ERC) is shown to apply to dialogue overall.
However, when the different roles of interlocutors in introducing new topics are identified, their contribution in
information content displays a new converging pattern. We draw explanations to this pattern from multiple
perspectives: Casting dialogue as an information exchange system would mean that the pattern is the result of
two interlocutors maintaining their own context rather than sharing one. Second, we present some empirical
evidence that a model of Interactive Alignment may include information density to explain the effect. Third, we
argue that building common ground is a process analogous to information convergence. Thus, we put forward an
information-theoretic view of dialogue, under which some existing theories of human dialogue may eventually

be unified.

1. Introduction

Dialogue can be understood from multiple theoretical perspectives.
It is a joint activity in which language plays a prominent role, a dynamic
process in which the common goal and the mutual understanding be-
tween speakers are achieved through grounding (Clark, 1996). It can
also be viewed as a two-way communication system where information
flow follows general regularities, e.g., the rule of optimizing the rate of
information transmission (Genzel & Charniak, 2002, 2003; Shannon,
1948), and the tendency to distribute material such that the density of
information remains constant (Uniform Information Density hypothesis,
UID, Jaeger, 2010; Jaeger & Levy, 2006; Temperley & Gildea, 2015).
Dialogue is also interpreted as a process in which alignment between
interlocutors occurs at multiple levels of linguistic representation, as a
result of primitive priming mechanisms (a.k.a, the Interactive Alignment
Model, 1AM, Pickering & Garrod, 2004), which can result in reduced
surprisal in terms of the language that each dialogue partner can ob-
serve. Whether alignment should be seen in an integrated theory as the
cause, an epiphenomenon, or an additional process, is unclear; how-
ever, in this paper we explore the possibility of an account of dialogue
that integrates these theories through observable, regular patterns of
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information distribution.

The motivation of this paper comes from two directions. First, in the
work on the entropy rate constancy (ERC) principle and later in the UID
framework, most of the existing studies rely on empirical evidence from
corpora of written-form natural language. Only some preliminary work
exists on transcripts of dialogue (Vega & Ward, 2009). It is unknown
whether the inherent differences between dialogue and written text will
bring up issues concerning the applicability of the theories. For ex-
ample, questions can be asked such as “does the ERC/UID principle
apply to the language from individual speaker alone, or to the dyad of
interlocutors as a system where multiple inputs of information merge?”

Second, the other two theories mentioned above, IAM and
grounding, have rich connections, but are not fully reconciled in terms
of their subjects and scopes. For example, Pickering and Garrod’s
(2004) IAM proposes that the alignment of situation models, i.e., the
multi-dimensional representation of the situation under discussion, is
central to a successful dialogue, and that interlocutors proceed towards
this higher level alignment by aligning on what they termed an implicit
common ground. This concept analogizes to the notion of common ground
by Clark and Brennan (1991), but whether they refer to the same
process remains debatable.
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Therefore, by answering the call for a better examination on how
the information centered theories (ERC and UID) apply to the language
production in dialogue, we propose a novel information-theoretic per-
spective of dialogue, which captures the basic needs of successful
communication - effective and efficient information exchange, and also
potentially reconciles the IAM and grounding theory. From a hier-
archical view of language use in dialogue, the IAM covers a full range of
linguistic representation levels, but most of the empirical work only
examines alignment at lower levels, such as phonemes (Pardo, 2006),
lexicon (Garrod & Anderson, 1987) and syntactic structures (Branigan,
Pickering, & Cleland, 2000; Pickering & Branigan, 1998;
Reitter & Moore, 2014). On the other hand, grounding theory (Clark,
1996) provides mostly qualitative descriptions at higher levels by
viewing dialogue as indistinctive example of joint activities in general
sense. The approach taken in this study investigates dialogue at a level
somewhere between the IAM and grounding perspectives, which starts
with quantifying the information density at sentence level, and then
takes into account the unique discourse structure in spoken conversa-
tions.

The first step of our work is to quantify the sentence information
(the reason for focusing on sentence is explained in Section 2.1) in
dialogue, and to examine whether it demonstrates the same overall
increasing pattern that has been discovered in written language. The
purpose of this step is to confirm whether the shared context between
interlocutors consistently accumulates in dialogue. In the second step,
we zoom into the level of the topic episodes (The reason of doing so is
discussed in Section 2.2), which are delineated using a topic segmen-
tation technique. We focus on how information density changes near
the boundaries of topic episodes. The goal is to relate the information
interchange between interlocutors to the process of building common
ground, as well as the alignment approach. Third, we turn to alignment,
hypothesizing that it is either cause or consequence of the informational
exchange that requires coordination between speakers.

The remainder of this paper is organized into seven sections. After
an introduction of background and raising the research questions in
Section 1, some previous studies of related issues are reviewed in Sec-
tion 2. In Section 3 we examine the overall trend of information density
in dialogues. In Sections 4 and 5, we examine the effect of topic shifts
on sentence information, and demonstrate the information converging
patterns between interlocutors of different roles within the scope of
topic episodes. Then in Section 6, we demonstrate how lexical align-
ment can be used to explain the convergence pattern. Finally, the im-
plications of these observations are discussed in Section 7.

2. Related work
2.1. The principle of entropy rate constancy

Human communication systems such as written text and speech
have been claimed to be optimized in that the rate of information being
transmitted keeps constant and is close to the channel capacity, a.k.a.,
following principle of entropy rate constancy (ERC) (Genzel & Charniak,
2002, 2003; Qian & Jaeger, 2011). This line of work was inspired by
Information Theory (Shannon, 1948), which relates uncertainty about
the next signal to the amount of information that can be transmitted.
The observation that communicators tend to distribute information
evenly may have much to do with the idea that information is a mea-
sure of cognitive load: much information, or at least much surprisal at
the information conveyed, is a model of how difficult it is to process
(Hale, 2001).

In Genzel and Charniak’s (2002) original work, the amount of in-
formation conveyed in natural language is estimated by treating the
word as a random variable, and then a bulk of text becomes a sequence
of random variables X;, where X; corresponds to the i-th word in the
text. ERC predicts that the information amount of the conditional
random variable, X;|X; = wy,....X;_1 = w;_;, should remain constant as i
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increases. Because natural language organizes messages into sentences,
the context formed by all previous words X; = wy,....X;—; = w;_; can be
decomposed into two parts: The global context C;, all the words from
preceding sentences, and the local context L;, all the preceding words
within the same sentence as X;. Then the variable that remains constant
can be written as the left term in Eq. (1), where H refers to entropy.
According to Information Theory, this term can be further decomposed
into the two terms on the right side: H (X;|L;), the entropy of X; con-
ditioned on local context L;, and I(X;C;|L;), the conditioned mutual
information between X; and its global context C;.

H(X;IC,L;) = H(X1L)—I(X;,Ci1Ly) (@)

Intuitively, Eq. (1) says that knowing about the global context (i.e.,
having positive mutual information between X; and C;), will make the
words under the current local context more predictable (hence, having
lower entropy). Another important fact is that as i increases, the mutual
information term I(X;,C;IL;) will also increase, because knowing more
about the context makes it easier to predict the upcoming content. Since
the whole right side of Eq. (1) also needs to remain constant (according
to Information Theory), then the entropy conditioned on local context,
H (X;IL;) must also increase with i. Therefore, the increase of locally-
conditioned entropy H (X;IL;) is an indicator of the ERC principle in
natural language.

Theoretically, the entropy of a random variable is defined as the
expected value of the information conveyed, and the amount of in-
formation is measured by the negative logarithm of the probability of
the event (Shannon, 1948). For a discrete random variable X, which has
n possible outcomes, its entropy is:

n

E[-log(P(X))] = = ), P(x)logP(x;)

i=1

(2)

where the unit of entropy is bit when the base 2 logarithm is computed.

Applying these concepts to natural language, the random variable of
our interest here is the next word given its preceding context (words),
a.k.a., an N-gram. For example, to estimate the entropy of the third
word X after the bigram context this is, then ideally, we need to enu-
merate all possible words that follow the context, e.g., good, bad, great,
etc., and estimate their probabilities, P (good
Ithisis),P (bad|thisis),P (greatlthisis). The conditional entropy of X,E
[P (Xlthisis)], is computed in the same way as Eq. (2). However, this
method is impractical because it is nearly impossible to enumerate all
the possible outcomes of X and estimate their probabilities accurately.

Therefore, alternative methods need to be used to properly estimate
the entropy of words. Genzel and Charniak (2002) provide such a
method by averaging the negative logarithm of probabilities of all the
trigrams in a sentence, and use this per-word information to approx-
imate the average entropy of words in the sentence (see Section 3.1 for
details). Thus, Genzel and Charniak (2002) compute the H (X;IL;) term
in Eq. (1) at the sentence level, and they have confirmed that this
variable increases with i, which now indicates the position of a sentence
within the text.

We adopt Genzel and Charniak’s method in this study and examines
how the estimated information of sentence is distributed and evolves in
dialogue. Genzel and Charniak (2002, 2003) in their original work and
Keller (2004) in a following study all referred to the per-word average
information as entropy, although this measure does not follow the de-
finition of Shannon’s entropy (Eq. (2)). Because entropy is a measure of
information that can be potentially conveyed over a channel before
seeing the actual transmission, as opposed to the actual information
conveyed by actual signals, which Genzel and Charniak’s approxima-
tion quantifies. Through the remainder part of this paper, we use the
term sentence information instead of entropy to account for the post hoc
nature of the approximation of H (X;IL;).

More recently, the idea of uniform information density (UID, e.g.,
Jaeger & Levy, 2006) has extended ERC into a broader framework that
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governs how people manage the amount of information in language
production, from lexical levels to all levels of linguistic representations,
e.g., syntax or semantics. The core idea of UID is that people avoid
salient changes in the density of information (i.e., amount of informa-
tion per amount of linguistic signal) by making specific linguistic
choices under certain contexts (Jaeger, 2010). Therefore, UID could be
viewed as a generalization of the principle of ERC.

We now take this a step further. We postulate that ERC/UID is a
principle that applies not merely to an individual’s cognition, but to the
system formed by several interlocutors as a whole. In examining in-
formation density in dialogue we will point out that information density
in an individual’s language (not necessarily their cognitive processes)
does not always follow the principle if they lead rather than follow the
conversation, but that the system of two speakers displays a constant
entropy rate.

While there is a body of literature on ERC and UID, spoken con-
versation is rarely examined, and when it is, conversation (like Twitter
messages) is treated as if it was monologue. Yet, authors widely ac-
knowledge that speech in dialogue is different from written language in
both form and content. For example dialogue is different from mono-
logue in that it is inherently interactive and contextualized, which re-
sults in its “irregular grammaticality” and “theoretically uninterested
complexities that are unwanted” (Pickering & Garrod, 2004). Con-
sidering the differences between spoken and written language, we
realize that many previous studies on human communication that use
information measurement method are incomplete in methodology and
not comprehensive enough in conclusions as well, because they solely
use written language as experiment materials. Thus, to better under-
stand human communication from the perspective of information
theory, a careful investigation is necessary on how much information
each party contributes in a dialogue and how the proportion of con-
tribution develops.

2.2. Sentence information and discourse structure

The ERC principle also leads to an interesting prediction about the
relationship between information change and topic shift in text.
Generally, a sentence that initiates a shift in topic will have lower
mutual information with its context, because the preceding context
provides little information to the new topic. Thus, a topic shift corre-
sponds to a drop in the mutual information term I (X;,C;IL;) in Eq. (1).
Then, to keep the left term constant, as predicted by ERC, the local
information term, H (X;IL;), needs to decrease when a topic shift hap-
pens. Genzel and Charniak (2003) verified this prediction by showing
that paragraph-starting sentences have lower information content than
non-paragraph-starting ones, with the assumption that a new paragraph
often indicates a topic shift in written text. This paragraph effect does
not exist consistently across different genres of text, because a new
paragraph does not necessarily represent a new topic.

Following this line of work, Qian and Jaeger (2011) applied a more
fine-grained latent topic modeling approach to ask how topic shifts
affect sentence information. They found the expected negative corre-
lation between sentence information and topic shift, and that the effect
of topic shift subsumes the effect of sentence position (for details, see
Qian & Jaeger, 2011). The relationship between sentence information
and discourse structure has also been utilized to build topic segmen-
tation tools (Eisenstein & Barzilay, 2008), in which the optimization of
segmentation is equivalent to minimizing the weighted sum of en-
tropies. More recently, Doyle and Frank (2015) leverage Twitter data
about ongoing baseball games to find further support to the ERC
principle: the information content of messages gradually increases as
the context builds up, and it sharply goes down when there is a sudden
change in the non-linguistic context.

The topic shift in spoken dialogue is not explicitly designated by
paragraph structures. Rather, as a dialogue unfolds, topic changes
naturally happen when a current topic is exhausted or a new one occurs
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(Linell, 1998; Ng & Bradac, 1993). In the field of Conversation Analysis
(CA), the basic unit of topical structure analysis in dialogue is episode,
which refers to a sequence of speech events that are “about” something
specific in the world (Linell, 1998). To be precise, we use the term topic
episode in this study.

The formation of a topic episode is a joint accomplishment of two
speakers and a product of initiatives and responses (Linell, 1990, chap.
8). When establishing a new topic jointly, one speaker first produces an
initiatory contribution that introduce a “candidate” topic, and the other
speaker makes a response that shares his perspective on that (Linell,
1998). The initiator of a new topic introduces novelty or surprisal into the
context, while the other speaker, the responder, is more of a commenter
or evaluator of information, who does not contribute as much in terms
of novelty. Therefore, the establishment of topic shift can be viewed as
a joint activity between interlocutors. Clark (1996) models joint ac-
tivities as sequences of sub-activities. If we view a dialogue as a joint
activity by two participants, then the topic episodes that naturally form
within can also be viewed as the so-called sub-activities. Furthermore,
Clark (1996) points out that participants have roles to play in a joint
activity, which may change from sub-activity to the next. This argu-
ment directly supports the initiator vs. responder distinction in topic
shift. The initiator and responder are such roles that help them co-
ordinate to accomplish the goal of the sub-activity, i.e., creating a new
topic.

Relating these theoretic insights back to the information approach
of natural language, it is reasonable to anticipate the same effect of
sentence information decrease patterns near the boundaries of topic
episodes in dialogue. Considering the initiator vs. responder discrepancy
in speaker roles, we also expect their patterns of change in information
density to be different.

2.3. Grounding and IAM

Language-as-activity means that dialogue is a joint activity during
which multiple (two or more) interlocutors contribute alternatively to
common ground (Clark & Brennan, 1991). The notion of common ground
can be traced back to Stalnaker (1978), based on older, similar concepts
such as common knowledge (Lewis, 1969), mutual knowledge or belief
(Schiffer, 1972), and joint knowledge (McCarthy, 1987). Clark (1996)
summarizes the definition of common ground: the common ground
between two interlocutors is the sum of their mutual, common, or joint
knowledge, beliefs, and suppositions. To clarify the confusion about
these notions, refer to Clark (1996), who also gives a detailed discussion
on the different representations of common ground.

As mentioned in Section 1, Pickering and Garrod (2004) in-
corporated the concept of common ground into the framework of IAM,
by treating implicit common ground as one of the representation layers
that becomes aligned between interlocutors, which is the automatic
consequence of the lower-level alignments. In their work, implicit
common ground is understood as a “subset” of the original notion of
common ground, which does not refer to the complete background
knowledge shared between interlocutors (Clark & Marshall, 1981), but
rather something dynamically built up along the course of dialogue
from the alignment at lower levels. However, there is still debate over
using the notion of common ground in IAM. For instance, Barr and
Keysar (2004) explain that the term “common ground” in Clark and
Marshall (1981) refers to the meta-knowledge rather than the shared
knowledge, and that what Pickering and Garrod (2004) are referring to
by “implicit common ground” is really just shared knowledge.

3. The dynamics of sentence information in dialogue

As the first step in building an information-theoretic account of
dialogue, we examine whether the principle of ERC applies to spoken
dialogue at all. We anticipate that sentence information should increase
throughout each conversation just as it does in written text. This step
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Table 1
Basic statistics of the corpora.

Statistics SWBD BNC

1126

109.3 (SD = 50.7)
141.0 (SD = 61.4)
7.14M

1346

51.7 (SD = 102.9)
70.3 (SD = 133.9)
3.88M

No. of dialogues

Avg No. of turns per dialogue
Avg No. of sentences per dialogue
Total No. of words

serves as the basis for the rest of this study.

3.1. Method: estimate sentence information

The Switchboard corpus (SWBD, Godfrey, Holliman, & McDaniel,
1992) and the British National Corpus (BNC, BNC, 2007) are used.
SWBD contains 1126 dialogues over telephone between two native
American English speakers. The complete BNC dataset is a collection of
written and spoken language of British English. Its spoken part further
consists of two parts: the demographically sampled part (BNC-DEM),
which contains impromptu speech in informal settings, and the context-
governed part (BNC-CG), which is sampled from more formal settings
(Tottie, 2011). To be consistent with SWBD and to simplify our ex-
periment design, we select part of BNC-DEM that contain two speakers
within each conversation. For convenience, in the rest part of this
paper, we use BNC to refer to this sampled part of BNC-DEM. Some
basic statistics of the two corpora are shown in Table 1.

We use trigram language models (LMs) to estimate the information
of a sentence, which is similar to Genzel and Charniak (2003) method.
A sentence is considered as a sequence of words, S = {w;,w;,...,w,}. The
information of the whole sequence, H(S), is estimated by averaging
over the negative logarithms of all the trigram probabilities in the
sentence:

H(S) = H(wy..w,) ~ —% E logP (w;lwy..w;_1)

wieW

1
™ E logP (w; lw;_,w;_1)

wiEW

~
~

3

where P (w;lw;_,w;_) is estimated by the LM using Katz backoff (Katz,
1987). The software we use to train the LMs is SRILM (Stolcke, 2002).
To estimate the probability terms as accurately as possible, LMs of
higher performance (hence, lower perplexity, etc.) are preferred. Be-
cause the selection of training set matters to the performance of LMs,
we carefully compared several options (see Appendix A), before we
finally use the method as below.

We extract the first 100 sentences from each conversation (this

14
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(a) Sentence information

Cognition 170 (2018) 147-163

number is about the average length of conversations), and apply a po-
sition-wise 10-fold cross-validation. Specifically, we randomly divide the
data into 10 subsets, S; (i = 1,2,...,10), and in each round of cross-vali-
dation, we train LMs from {S;|j # i}, and use them to compute the
sentence information in S;. “Position-wise” means that when computing
the information of a sentence, we use LMs trained from sentences of the
same position, i.e., for the sentences of position k in S,SF
(k=1,2,.,100), we need to wuse the LM trained from
{Sjlj # i, position = k}. Therefore, in each cross-validation round, we
train 100 distinct LMs. Genzel and Charniak (2003) first used this po-
sition-wise training method on the Wall Street Journal text, but they did
not explain the reason behind it. Presumably, their intention was to
avoid using information from the later part to predict the preceding
content. Although we have found that the non-position-wise training
method draws similar results to the position-wise training (see
Appendix A), we adopt the latter method here so that the results are
comparable to the previous work.

3.2. Results

3.2.1. Sentence information increases in dialogue

Fig. 1a shows the sentence information against its global position,
i.e., the sentence position from the beginning of dialogue (from 1 to
100). It can be seen that sentence information increases with global
position in both corpora. BNC has larger slope, and SWBD has a flatter
curve but sharper increase at the early stage of dialogue.

Tests of normality (see Appendix C) show that the distributions of
sentence information in both corpora are significantly different from
normal ones, and that its logarithm seems to have better normality.
Thus, in the later part of this section where statistical tests are con-
ducted, we take the logarithm transformation of sentence information
as response variable. It is worth noting that the log transform of in-
formation does not convey theoretical meaning, but it is just an inter-
mediate variable that better fits the prerequisites of the statistical tests.

Based on the considerations above, in order to test the statistical
significance of the observed increase of sentence information in Fig. 1a,
we fit linear mixed-effect models, using the logarithm of sentence in-
formation as response variable, and the global position as predictor
(fixed effect), with a random intercept grouped by distinct dialogues.
The 1me4 package in R is used (Bates, Machler, Bolker, & Walker,
2015). It shows reliable fixed effects of global position for both SWBD
(B =3.9 % 10™%p < 0.001) and BNC (8 = 1.4 X 1073,p < 0.001).

We notice that the curve of SWBD looks flat after a boost at the early
stage. We fit an extra (post-hoc) model to test whether the increase is
reliable in later stage of dialogue (for global position > 10) as well. This

Fig. 1. Sentence information (a) and normalized
sentence information (b) against the global position
(ranging from 1 to 100). The y-axis values in (b) are
given +0.05 and —0.05 offsets on BNC and SWBD
respectively to avoid overlap. Bootstrapped 95%
confidence bands.

50
Sentence position within dialogue

75 100

(b) Normalized sentence information
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is indeed the case (8 = 2.1 x 107, p < 0.01), although the regression
coefficient (reflecting how fast sentence information increases) is
smaller than that of BNC. The early dramatic increase of sentence in-
formation in SWBD, and the difference in regression coefficients be-
tween corpora might be related with the forms of conversation. The
low-information sentences at the beginning of SWBD conversation
could convey common greetings in conversations over the phone. On
the other hand, BNC conversations took place face-to-face, and it is
possible that the two participants had met before the conversation
started, which resulted in the relatively high initial sentence informa-
tion (because they started the substantial content right away). More
quantitative and qualitative work is needed to investigate the between-
corpora difference in the increase rate of sentence information, which is
beyond the scope of this study.

3.2.2. Eliminating the effect of sentence length

Keller (2004) pointed out that in written text (e.g., Wall Street
Journal articles) the increase of sentence information along global po-
sition could be an artifact of sentence length, i.e., sentence length in-
creases with its position, and sentence information is known to be
correlated with its length. He regresses out the effect of sentence length
by computing the partial correlation (Johnson & Wichern, 2014), and
eventually shows that sentence information does increase with sentence
position.

Here, our preliminary computation shows that in SWBD and BNC,
sentence length and global position are weakly correlated (SWBD,
r = —0.035, p < 0.001; BNC, r = 0.038, p < 0.001)," and sentence length
is correlated with sentence information as well (SWBD,
r = 0.258, p < 0.001; BNC, r = 0.091, p < 0.001). Therefore, it is neces-
sary to eliminate the effect of sentence length.

Following the method proposed by Keller (2004), we compute the
partial correlation coefficients between the total amount of information
within sentence (i.e., without averaging in Eq. (3)) and its global po-
sition, with sentence length partialled out. We find significant partial
correlations for both SWBD (r = 0.055, p < 0.001) and BNC
(r =0.117,p < 0.001). This result is sufficient for us to conclude that
sentence information does increase with global position when sentence
length is controlled.

Considering that sentence information is correlated with sentence
length, we hope to find a substitute of the original measure of sentence
information, which on the one hand reflects the amount of information
in a sentence, but is also independent of sentence length. We consider a
method proposed by Genzel and Charniak (2003), which is originally
used to calculate the syntactic complexity (tree depth and branching
factor) of a sentence in a way that is independent of the sentence length.

Let H (s) be the original information of a sentence s (computed via
Eq. (3)), and H'(s) be the target measure that is independent of sen-
tence length. First, we need to compute H (n), the average per-word
information of sentences of the same length n, for all possible lengths
(n = 1,2,...) that have occurred in the corpora:

1
= sml S;‘n) HE)

H ()

where and S (n) = {sll(s) = n} is the set of all the sentences in the corpus
that have the length of n. Then we compute H'(s) by:

H
) - HO)
H (n)
We refer to this new metric as the normalized information. It is not

sensitive to the length of sentence. We still use the original information
measure H (s) to demonstrate some results in this paper, because it is a

1 Note that these two correlations are in opposite directions, which is probably caused
by the different nature of the two corpora. Investigating this discrepancy may lead to
some interesting findings, but it is beyond the scope of this study.
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direct metric of the absolute magnitude of information.

How the normalized sentence information changes with global po-
sition is shown in Fig. 1b. Basically, the normalized information in-
creases with global position, which is consistent with the unnormalized
sentence information. We fit linear mixed-effect models using the
logarithm of the normalized information as the response variable, and
global position as the predictor (fixed effect), with a random intercept
grouped by dialogues. The models demonstrate significant fixed effects
of global position for both SWBD (8 = 5.7 X 107#, p < 0.001) and BNC
(B =14 %1073 p < 0.001). We also fit an extra model for SWBD with
global position > 10, and the effect remains significant
(8 =3.0x 1074, p < 0.001).

Summarizing this section, we have found that sentence information
increases over the course of the whole dialogue, which is consistent
with previous findings on written text (Genzel & Charniak, 2002, 2003;
Qian & Jaeger, 2011). This increase pattern remains significant when
we eliminate the effect of sentence length. Our results lend further
support to the ERC principle in the realm of speech communication, i.e.,
the way people organize information transmitting rate when they talk
face-to-face or in phone is indeed governed by the generic rule of ef-
ficient communication.

4. The effect of topic shifts on sentence information in dialogue

As we have seen, sentence information seems to change in ways that
are similar in dialogue and in written text. However, the distribution of
information becomes quite interesting once we account for the topic
structure in dialogue. Previous studies have observed the change of
sentence information caused by the topic shift in written text
(Genzel & Charniak, 2003; Qian & Jaeger, 2011). Intuitively, this effect
should also exist in dialogues, because the shift, maintenance and re-
sume of topic episodes are ubiquitous in natural conversations
(Ng & Bradac, 1993).

Empirically, the key is to identify the boundaries where topic shifts
occur. Within the context of dialogue, this task involves finding, or
defining, the topic episodes in dialogue. Here we compare two ways to
accomplish the task. In a first approximation, we use speaking turns as
topic episodes; and then, we apply a topic segmentation algorithm.

4.1. Speaking turns as topic episodes

It is simplistic to treat all the speaking turns as topic episodes, be-
cause a considerable proportion of spoken dialogues are short utter-
ances that consist of fillers (e.g., “uh”, “um”, etc.), back-channeling (e.g.,
“yeah”, “mm”), or incomplete sentences (see below for an example of
short turns from SWBD). The semantic contribution of these turns de-
pends largely on their context, and thus it is unreasonable to treat them
as individual topic episodes.

: Yeah.

: Smaller towns.

: Yeah. Smaller towns.
Oh.

SIS

However, for longer speaking turns that contain two sentences or
more, it is sometimes reasonable to treat them as independent topic
units, because they often convey relatively complex meanings. In the
following example of long turns (partially shown) from SWBD, appar-
ently the two speakers are expressing complex ideas, and each turn is
about a relatively independent topic.

A: It was human nature. But it won’t have can any, uh, any bad stuff. So,
uh, I think I, we spend, of all the major semiconductor firms, we probably
put safety and environmental on the utmost, foremost, uh, uh, first thing
we always look at.

B: Well, I know from some of the sites that we’ve had, uh, quite a list of cites
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Table 2
Basic statistics of the turn length (in no. of sentences).

SWBD BNC
Average turn length 1.29 1.54
Turn length standard deviation 0.70 2.63
Percentage of turn length = 1 79.5% 78.3%
Percentage of turn length = 2 15.0% 13.7%
Percentage of turn length = 3 3.7% 3.8%
Percentage of turn length > 3 1.8% 4.2%

that have gone bad and you have to clean up. And, you know the law
now is the super fund and anybody who’s contributed toxic waste, no
matter if you were somebody that eventually, you know, uh, damaged the
ground or not. ...

Based on the considerations above, we only treat the turns that
consist of two sentences or more as topic episodes. Table 2 shows that
about 20% turns in both corpora meet this mark. The remaining 80%
turns that contain only one sentence are not included in the next ana-
lysis.

On the basis of Genzel and Charniak’s (2003) finding that sentence
information drops at the beginning of new topics in written text, we
expect to see the same pattern within a turn. Indeed, the normalized
information of the non-turn-starting sentences is significantly higher
than that of the turn-starting sentences (SWBD: t = —6.29,p < 0.001;
BNC: t = —14.51,p < 0.001). This result implies that the long turns in
dialogue function as individual topic units, which entails a distribution
of information between sentences that is predicted by ERC.

4.2. Topic segmentation using TextTiling

The analysis in the previous section has obvious flaws. First, rela-
tively long turns that contain more than two sentences make up only a
small portion of each corpus (see Table 2). Second, if we consider the
joint nature of the formation of new topics in dialogue (Linell, 1990,
chap. 8), turns really make a poor man’s approximation of a topic
model. Therefore, we use topic segmentation algorithms to find topic
shifts.

4.2.1. Method

There are multiple computational algorithms for the task of topic
segmentation, such as the TextTiling algorithm (Hearst, 1997), Baye-
sian model (Eisenstein & Barzilay, 2008), Hidden Markov model
(Blei & Moreno, 2001), graph-based model (Malioutov & Barzilay,
2006), etc. We have obtained similar results for our experiment (will be
explained later) using TextTiling and other two state-of-the-art seg-
mentation algorithms, BayesianSeg, a Bayesian unsupervised topic seg-
mentation method (Eisenstein & Barzilay, 2008), and MinCutSeg a
graph-based segmentation model (Malioutov & Barzilay, 2006). How-
ever, we find TextTiling to be a better option and will use it in the
following demonstration, for two considerations: First, it outputs more
reasonable segment length (see Appendix B for details). Second, it is a
cohesion-based method, which avoids the confounding effect in more
sophisticated methods that use word surprisal per se.

Here is the experiment procedure: We use the TextTiling algorithm
to insert boundaries into the sequence of all sentences in a dialogue.
Then we treat the resulting segment between any two boundaries as a
topic episode, which is the basic topic structure in dialogue. To give an
impression of the performance of TextTiling on our data, we show two
examples of the surrounding text near the topic boundaries:

Example 1. (from SWBD):

Prev Speaker A: So, I was very comfortable, you know, in
doing it when it got to the point that we had to do it.
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epi-
sode

Next Speaker A: But there’s, well, I had an occasion for my
epi- mother-in-law who had fell and needed to be, you know,

sode  could not take care of herself anymore, was confined to a
nursing home for a while that was really not a very good
experience.

Example 2. (from BNC):

Prev Speaker B: We need the keyboard now. I gotta find out
epi- where that plugs in at the back somewhere usually.
sode

Next Speaker B: Then we can turn it on and see if it all works.
epi- Can you hold that for a while?
sode

In the examples shown above, the horizontal lines indicate the topic
boundaries. In the “previous episode” of Example 1, the two speakers
were talking about “sending family members to nursing homes” and
their attitude were basically positive (see the bold text). In the “next
episode”, however, speaker A brought up a counterexample that was
“not a very good experience” (bold part). In Example 2, the two
speakers were assembling a machine in the “previous episode”, and
their talks were basically about finding parts of the machine and trying
to put them together. In the “next episode”, they entered a new stage
where their goal was to turn on the machine and test whether it func-
tioned well. From the two examples, we can see that the TextTiling
algorithm can indeed capture the topic episodes that naturally shape
during dialogue, which are either caused by an active shift of topic, or
the starting of new sub-activities.

For each topic episode, an episode index is assigned, indicating the
episode’s relative position in the dialogue (starting with 1). An addi-
tional within-episode position indicates a sentence’s relative position
from the beginning of the episode that it belongs to. Table 3 shows the
average number of episodes per dialogue and the average number of
sentences per episode in the two corpora.

4.2.2. Results

We plot the sentence information and normalized sentence in-
formation against the within-episode position of sentences, grouped by
the episode index (Fig. 2). Limited by space, we only show the first six
topic episodes in each dialogue and the first ten sentences in each
episode. It can be seen that sentence information and normalized in-
formation are of lower values at the beginning of topic episode, and
they increase within the episode.

Linear fixed-effects models were fitted to the data using the sentence
information and normalized sentence information as response variable
respectively, and the within-episode position as predictor (fixed effect),
with a random intercept grouped by distinct episodes. We find a sig-
nificant effect of within-episode position on both measures in both
corpora: Sentence information in SWBD, B8 =59 x 107 p < 0.001;
normalized information in SWBD, 8 = 4.5 X 1073, p < 0.001; sentence
information in BNC, 8 = 2.5 x 1072, p < 0.001; normalized information
in BNC, 8 = 3.0 x 1073, p < 0.001.

In summary, we have shown that by applying topic segmentation
algorithm we can capture the topic structure in dialogue, i.e., topic
episodes. The patterns of sentence information within the topic episodes

Table 3
Number of topic episodes per dialogue and number of sentences per episode resulted from
applying the TextTiling algorithm.

Statistics SWBD BNC
Avg. No. of episodes per dialogue 12.1 (SD = 4.3) 7.1 (SD = 10.8)
Avg. No. of sentences per episode 11.7 (SD = 10.6) 12.4 (SD = 8.3)
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Normalized sentence information
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Relative sentence position within topic episode

(b) Normalized sentence information

Fig. 2. Sentence information (a) and normalized sentence information (b) against the relative sentence position (from 1 to 10) within topic episode grouped by topic index (from 1 to 6).
The y-axis values in (b) are given +0.05 and —0.05 offsets on BNC and SWBD respectively to avoid overlap. Bootstrapped 95% confidence bands.

and near their boundaries are consistent with what have been pre-
viously found on written text.

5. Speaker roles in dialogue topic segments

So far, we have characterized how the sentence information changes
within the whole course of dialogue, and the patterns that are asso-
ciated with the topic structure of dialogue. The previous two sections
set the stage for our core purpose in this study, i.e., to model the joint
and individual contributions of interlocutors from an information-the-
oretical perspective.

One feature of the “joint activity” nature of dialogue is that all the
sentences are from two (in the simplest case) different interlocutors. So,
a logical starting point would be to examine the sentence information of
different interlocutors respectively. This requires us to systematically
distinguish the two interlocutors. Linking back to Section 2.2, the un-
ique topic shift mechanism in dialogue provides a rule to differentiate
the speakers by categorizing them as either topic initiator or topic re-
sponder within the scope of each topic segment. The initiator of a new
topic is the one who brings “novelty” to the current context, and a re-
sponder is the one who passively accepts or comments on the topic
shift. We expect that this discrepancy in speaker roles can be reflected
in their respective sentence information patterns. Examining that also
lets us address the question whether and how ERC (and related UID)
applies to an individual’s language output, or whether it is a property of
the dialogue partners as a communicating and collaborating system.

In the following part of this section, we operationalize the concepts
of topic initiator and topic responder. Based on that we further investigate
how their sentence information develop within the scope of topic epi-
sodes in dialogue.

5.1. Method: identify two types of topic shifts

Topic shifts can be characterized according to whether they occur at
turn boundaries or not. So, we identify within-turn topic shifts, which
occur in the middle of a turn, and between-turn topic shift at the gap
between two turns from two different speakers. In SWBD, 27.2% of the
topic boundaries are within turns, and 72.8% are between turns, and for
BNC the percentages are 41.2% and 58.8% respectively.

A within-turn topic boundary suggests that the speaker of the cur-
rent turn is initiating the topic shift. On the other hand, a between-turn
boundary suggests that the following speaker who first gives a sub-
stantial contribution is more likely to be the initiator of the new topic.
Now that the topic initiator is identified, we can also mark the topic
initiating utterance (TIU), to refer to the body of sentences that brings up
the new candidate topic by the initiator.

We operationalize TIU as follows: for within-turn boundaries, let
TIU be the remaining part of current turn after the boundary; for be-
tween-turn boundaries, let TIU be the whole body of the next turn
immediately following the boundary. One empirical characteristic of a
TIU is that it tends to be relatively long, because a short sentence is less
likely to convey adequate information about a new topic. Thus, we
validate this operational definition above by examining the length
(number of words) of TIUs. It shows that for within-turn boundaries,
TIUs are relatively long (SWBD, mean = 25.5,median = 19.0; BNC,
mean = 25.3,median = 15.0) as expected. But for between-turn bound-
aries, TIUs are short (SWBD, mean = 9.3,median = 2.0; BNC,
mean = 9.7, median = 5.0). It means the definition of TIU for the case of
between-turn boundaries needs to be modified, so that a more suitable
portion of utterances are selected, and also an equitable selection is
made between within- and between turn boundaries.

Therefore, we modify the operational definition of TIU for between-
turn boundaries as follows: as many sentences immediately following
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Within-turn topic boundary

l—

Speaker A:

Speaker A:

Speaker B:

le—

Between-turn topic boundary

the boundary as is necessary to reach a length threshold for the TIU, N.
We set N =5, the median of all first sentences after topic episode
boundaries (regardless of turns). We explain the operational definition
of TIU in Fig. 3.

5.2. Results

We will report results on lexical information convergence before
relating it to convergence of information contained in structural fea-
tures of language.

5.2.1. Sentence information converges between topic initiator and responder

We distinguish the two speakers’ roles in each topic episode: let the
author of TIU be the initiator of the current topic, and the other one be
the responder. We plot the sentence information (and normalized in-
formation) against its within-episode position respectively, grouped by
speaker roles (initiator vs. responder) in Fig. 4.

It can be seen that at the beginning of a topic episode, the initiators
have significantly higher sentence information than the responders. As
the topic develops, we can see that the initiators’ information decreases
(see Fig. 4a, except for the temporary short increase from within-topic
position 1 to 2 in SWBD) or stays relatively steady (see Fig. 4b); and the
responder’s information increases. Together they form a convergence
trend within topic episode.

We use linear mixed models to examine the observed convergence
trend, i.e., to test whether the sentence information reliably decreases
for initiators and reliably increases for responders. Models are fitted for
initiators and responders respectively, using the sentence information
(and normalized information) as response variables, and the within-
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Fig. 3. Operational definition of topic initiating utterances (TIUs). The red
vertical bars indicate the topic boundaries placed using TextTiling. A
complete horizontal bar of one color represents a turn from one speaker
(green for speaker A and blue for speaker B). The upper line shows the case
of within-turn topic boundary, and the lower line shows the case of be-
tween-turn topic boundary. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

topic initiating utterance (TIU)

episode position as predictor (fixed effect), with a random intercept
grouped by the unique episode index. Our models show that for the
sentence information, the fixed effect of within-episode position is re-
liably negative for initiators (SWBD, 8 = —3.6 X 1072, p < 0.001; BNC,
B =—-29x 1072 p < 0.05) and reliably positive for responders (SWBD,
B =33x%x 107} p <0.001; BNC, 8 = 1.4 x 107}, p < 0.001). For the nor-
malized sentence information, the fixed effect of within-episode posi-
tion is insignificant for initiators, which means there is neither increase
nor decrease, and is reliably positive for responders (SWBD,
B=14x10"2 p<0.001; BNC, §=1.2x 1072 p < 0.001). Thus, the
convergence trend is statistically reliable.

The observation that topic initiators’ sentence information decreases
within topic episode is at first glance inconsistent with previous find-
ings that assert an increase of sentence information in written text,
which will be discussed in Section 7.

5.2.2. Convergence of other sentence-level measures

Previous studies have pointed out that sentence information is clo-
sely correlated with other syntactic complexity measures of sentence
(Genzel & Charniak, 2002, 2003).

To examine whether the convergence of sentence information is
accompanied by similar converging patterns of other measures of sen-
tence-level linguistic representations, we consider three statistics: sen-
tence length (SL), tree depth (TD), and branching factor (BF). SL is the
number of words in a sentence. TD is the depth of the parse tree of a
sentence. BF is defined as the average number of children nodes of all
non-leaf nodes in the parse tree of a sentence. TD and BF are known to
be positively and negatively correlated with sentence information in
written text (Genzel & Charniak, 2003).

Fig. 4. Sentence information (a) and normalized
sentence information (b) against the relative sen-
tence position within topic episodes, grouped by
speaker roles (topic initiator vs. responder).
Bootstrapped 95% confidence bands.
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Fig. 5. Sentence length (SL), tree depth (TD) and branching factor (BF) against the relative sentence position within topic episodes, grouped by speaker role (topic initiator vs. responder).

Bootstrapped 95% confidence bands.

We plot the SL, TD, and BF of sentence against its within-episode
position, grouped by speaker roles (initiator vs. responder) in Fig. 5. All
three measures show similar convergence patterns as sentence in-
formation (see Xu & Reitter, 2016a for details). These results are ex-
pected, because the length and complexity of sentence are closely
correlated with the information content. It also reflects the fact that the
convergence of linguistic features within local topic episodes is ubi-
quitous in dialogue.

The convergence trend of entropy might be a reflection of alignment
at lower representational levels. The interactive alignment model (IAM,
Pickering & Garrod, 2004) asserts that repeating words and syntactic
choices between speakers will lead to increased alignment at higher
linguistic representation levels, and we believe these results are com-
patible with that view. In the next section, we explore further from this
perspective.

6. Linguistic alignment as a source of information convergence?

In understanding the mechanisms that may lead to speaker con-
tributions with converging sentence information, the IAM framework
(Pickering & Garrod, 2004) provides a possible explanation: the con-
vergence of sentence information could be due to a process in which
interlocutors gradually adopt each other’s language at multiple levels
(lexical, syntactic, etc.). This process may, and that would be new, be
constrained by topic episodes. Based on the well-known effects of
syntactic adaptation (Bock, 1986), syntactic alignment has been related
to increased task success in task-oriented dialogue (Reitter & Moore,
2014). Given that information needs to be effectively transmitted for
such task success, we ask whether informational convergence co-occurs
with some forms of alignment.

To validate this explanation, we need to examine whether the de-
gree of linguistic alignment changes within topic episode, in a direction
that is consistent with sentence information. In other words, if we
model short-term alignment as a convergence process that, to some
extent, restarts with each topic segment, we would expect increasing
overlap towards the end of each segment if local alignment parallels the
information pattern.

Due to space limitations, we only discuss alignment at the lexical
level here. The local linguistic alignment (LLA) proposed by Fusaroli et al.
(2012) and Wang, Reitter, and Yen (2014) is used to quantify the
strength of alignment. LLA is computationally defined as the number of
repeated words between two bodies of text, prime and target (as P and T
in Egs. (4) and (5)), normalized by their length:
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We examine whether LLA increases within topic episode. If we ob-
serve a reliable increasing trend of LLA, then that would support our
hypothesized explanation that similar linguistic representations shared
between interlocutors contribute to the converged entropy. A linear
mixed model was fitted using the relative position of (P, T) pair within
topic episode as predictor, with a random intercept grouped by unique
topic episode. Indeed, we found a significant effect of the relative po-
sition of utterance pairs, and the coefficient is positive (SWBD,
B =22x%x10"4 p <.001; BNC, §=4.6x 1074, p <. 001), which sug-
gests that the lexical alignment between interlocutors does increase
within topic episode.

Considering the fact that LLA is sensitive to the size of P and T, i.e.,
utterance length (Doyle, Yurovsky, & Frank, 2016), and that sentence
length systematically changes in topic episode (see Fig. 5), we come up
with a normalized variant of LLA (in a similar way as to normalized
sentence information), nLLA, which is independent of utterance length
(see Appendix D for details). Same significant effect of the utterance
pair position is found when nLLA is used to fit the linear mixed-effect
models (SWBD, B =9.9x%x1073 p <.001; BNC, B=
7.1 X 1073, p < . 001). We plot nLLA against the relative utterance po-
sition in Fig. 6. Except for the case of Episode 1 in SWBD, we can ob-
serve the slight, yet consistent increase of nLLA within topic episodes.

These results supports the explanation that the convergence of
sentence information between interlocutors may be facilitated by the
increased alignment of linguistic representations (in this case, words).
Of course, we show a correlation, but a causal analysis will require
either a temporal-causality framework or an experimental design.

7. Discussion
7.1. Summary

The motivation of this study is rooted in the growing body of work
on the principle of entropy rate constancy, and in the question of
whether this principle generalizes to dialogue. We examine the varia-
tion patterns of sentence information in dialogues and how these pat-
terns interact with the topic structures and speaker roles. This allows us
to obtain a more focused picture of people’s communicative behavior
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Fig. 6. Normalized Local Linguistic Alignment (nLLA) against utterance position within topic episodes. Bootstrapped 95% confidence bands.

from an information-theoretical perspective.

What we found are new patterns of sentence information that are
quite different from those in written text. Specifically, when distin-
guishing the speakers’ roles by topic initiator vs. responder, the in-
itiator’s information decreases whilst that of the responder increases
within each topic episode, and together they form a convergence pat-
tern. The downward trend among topic initiators seems to be contrary
to the ERC principle, but as we will discuss next, it is actually an effect
of the unique topic structure schema of dialogue.

From an information-theoretic perspective, our findings provide an
angle to view dialogue as a process of information exchange. To use
classic language by Shannon (1948), in dialogue, interlocutors play the
roles of information provider and receiver interactively within each
topic episode. From the perspective of linguistic behavior, our findings
provide further support to the existing work on convergence of lin-
guistic representations in conversations. Both of the two perspectives
will be discussed.

Beyond the effect of speaker roles, we do observe that sentence
information increases with its global position in the dialogue, which is
consistent with written text data (Genzel & Charniak, 2002, 2003;
Qian & Jaeger, 2011; Keller, 2004). This indicates that human com-
munication in spoken form does follow the general principle of con-
stancy rate.

The distribution of information density among the two types of
dialogic contributions may be a consequence of the cognitive load im-
posed by topic-shifting. Under an ERC/UID assumption at the level of
the individual, one would need to postulate that topic initiation re-
quires fewer cognitive resources for the expert topic-introducer, who
retrieves the most salient, best-known facts to convey first; hence more
information density is warranted. However, at the surface level, in-
formation density is not constant for the topic initiator’s language
within a topic episode. Only if we treat the dialogue partners as a
system does information density follow the patterns proposed by the
ERC/UID hypothesis.

7.2. Dialogue as a process of information exchange

By combining topic segmentation techniques and fine-grained dis-
course analysis, one may view human communication from a new
vantage point: because interactants disseminate information in dia-
logue, we need to focus on the distribution of information density in
order to describe strategies of speakers and the resulting structure in
dialogue.

One difference between written and spoken language in conversa-
tion is that there is only one direct input source of information in the
former, i.e., the author of the text, but for the latter, there are multiple
and changing direct input sources, i.e., the different speakers. Because
of this inherent difference, when language production is treated as a
process of choosing proper words (or other representations) within a
context, the definition of “context” is different between the two forms

of communication. In written language (see Eq. (4) in Section 2), C;, the
global context of a word X;, is assumed to be all the words in preceding
sentences. This is a reasonable hypothesis within UID, because for ex-
ample, when an author writes a book, he will organize the distribution
of information in sentences and paragraphs evenly for the benefit of the
readers, i.e. the potential comprehenders, so that the later chapters can
be inferred from previous ones, and the later paragraphs in a chapter
can be inferred from earlier ones and so on. The key behind this delicate
design in written text (if we accept UID as by design) is that constant
contextual entropy maximizes the chance of successful comprehension
(Jaeger, 2010).

In the case of dialogue, however, interlocutors switch rapidly be-
tween the roles of language producer and comprehender, and thus the
concept of context is different. Within a dialogue, for any upcoming
utterance, all preceding utterances together can be viewed as the shared
context for the two speakers. We propose a mental experiment to help
illustrate how the shared nature of context affects the interlocutors’
behavior: Suppose we, as researchers and “super-readers”, observe the
transcript text of a dialogue between speaker Alice and Bob. To us, any
upcoming utterance is based on the context created by all previous
utterances, which is why we can observe a consistent increase of sen-
tence information within the whole dialogue. Also, to us, a new topic
episode in dialogue is just like a new paragraph in written text, within
which we can observe steady information increase without differ-
entiating the utterances from the two speakers. But from the perspec-
tive of an individual interlocutor, he or she will not necessarily leverage
the preceding utterances as a coherent context. Specifically, Alice, as a
topic initiator, might not rely much on the previous shared context (say,
the previous topic episode) as she introduces the new information that
is from an “outer” context. Therefore her sentence information starts
high (i.e., contains more information) and gradually decreases, because
the new content she introduces (from an outer context) has low mutual
information with the current context represented by the preceding
utterances. On the other side, Bob as a topic responder relies on the
previous shared context, including the initiator’s very first utterance
that introduces the new topic (i.e., TIU). Right after the TIU, he notices
that his partner wants to talk about something else, which means the
context of his next utterance has changed. It explains why his sentence
information starts low — the mutual information between the upcoming
utterance and the old context is reduced. Moreover, as the responder
acts more as a passive follower at the early stage of the topic shift, he
tends to take whatever is provided by the initiator and uses this to in-
crementally update the context. As the context is built with the new
topic being developed, the mutual information between his next ut-
terance and the context also increases, which causes the increase of
sentence information.

Another angle to view the difference between dialogue and written
text is that the former is dynamically constructed, where the partici-
pants have the opportunity to fix misunderstandings in real time, while
the latter needs to be well designed in advance for the optimal chances
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of comprehension. Therefore, Alice, the topic initiator, can provide
much information without worrying if Bob can comprehend it easily for
she knows that he can always ask for clarification. Rather, it is Bob’s
reaction that matters to the quality of communication: if he also pro-
duces a lot of information immediately after Alice, then it will cause
comprehension difficulty for both speakers.

To sum up, dialogue can be viewed as a communication system of
two components that interactively exchange information between each
other. The channel between the two components are efficiently used in
a way that maximizes use of its capacity: when the information trans-
mission rate from one side to the other is high (i.e., when the initiator is
introducing a new topic), the rate of the other direction is corre-
spondingly low (i.e., the responder is contributing less information
early on in a topic episode); as the transmission rate of one direction
decreases, the rate of the other direction increases, while the total ab-
solute rate keeps constant. We believe that there is a cognitive me-
chanism behind this automatic adjustment of relative channel size. The
respective cognitive load imposed by following the dialogue in a new
direction may be complemented by reduced information in the form of
language. This is, again, compatible with a communication framework
that imposes a tendency to limit or keep constant overall information
levels, but views the dialogue partners as a socio-cognitive system.

7.3. Grounding driven by the need for efficient information exchange

Effective communication calls for the success in building common
ground between people. The converging patterns of sentence informa-
tion found in this study reflects the process of grounding. If we break
down the process of how common ground is built during the early phase
of dialogue (or, segments in dialogue), we can find that the grounding
process is driven by the need for efficiency in the joint work that is
dialogue.

In the dialogues we have examined, when a new topic starts, the
initiator knows best about this topic; the initiator contributes more
information in her turn, hence its higher entropy. The responder at first
knows little about the new topic; the purpose of his early utterances,
from the perspective of grounding, is to let the initiator know that he
has received the information of the new topic, which is why these
utterances are simpler and more common ones that contain less lexical
information, such as short acknowledging back-channel utterances, and
short comments or queries and so on. As the conversation evolves,
mutual knowledge, i.e., common ground, is accumulated, which means
the responder knows more about the new topic (and he is certain that
the initiator knows this, too), now in his feedback he can express more
substantial opinions that contains more lexical information, i.e., higher
entropy. On the other hand, the decrease of initiator’s sentence in-
formation can be explained by the “drying up” of information - it is
difficult and unnecessary for the initiator to keep maintaining high
novelty in her contribution to the conversation because she also needs
to acknowledge the responder’s utterances; her own cognitive load also
places limits on the duration of the act of “bringing in new content”.

The result is a rational outcome for the system of interlocutors: it
optimizes truth maintenance among dialogue participants, and it would
predict more successful joint work when a dynamic information density
is complementary among speakers. Suppose the rules of engagement
would not allow for changing information density in individual
speakers. Let’s imagine, Alice and Bob split their use of the commu-
nication channel “fairly” in that they aim to contribute information at
the same rate each. Alice is the expert, and Bob is a novice. Then, the
outcome is unlikely to be the most truthful reflection of the dialogue’s
topic, nor does Alice transfer some of her knowledge to Bob at the
optimal rate. (As an aside, examples of this can be found in political
discourse or media representations of scientific debates, where minority
dissenters or uninformed candidates are given similar airtime, with
results that do not reflect the state of the art, or result in public opinion
of a candidate that might not reflect a more neutral assessment.)
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By distinguishing topic initiators from topic responders our model also
reflects some of the key characteristics of joint activities. For example,
as Clark (1996) proposed: in a joint activity, participants play different
roles; an activity is usually comprised of sequences of sub-activities, and
the participants’ role may differ from sub-activity to next. Third, to
achieve the goal of the activity, coordination between participants of
different roles is required. In our case, a topic episode within a dialogue
can be viewed as a sub-activity, in which the initiator sets up a domi-
nant goal, i.e., to develop a new topic, and the responder joins him in
order to achieve the goal. The role of an initiator is indicated by her
high activity (more production and high entropy) at the early stage,
while the role of a responder requires him to take a more “accepting”
stance. The roles of initiators and responders are not fixed among in-
terlocutors across topic episodes in a dialogue. The initiator of topic
could be the responder of next, and vice versa.

7.4. Linguistic alignment parallels the convergence of sentence information

The convergence of sentence information within topic episodes can
be interpreted as a sign of interactive alignment between the inter-
locutors. The Interactive Alignment Model (IAM, Pickering & Garrod,
2004) predicts that speakers tend to adopt their interlocutor’s choices of
words and syntactic rules. Increased repetition of linguistic features
directly increases the similarity of language productions between in-
terlocutors. Thus the convergence can be a consequence of increased
lexical and syntactic repetition.

Note that alignment is stronger for less expected, lower-frequency
linguistic elements (Jaeger & Snider, 2013; Reitter, Keller, & Moore,
2011), so it is not surprising to assume that speakers attend more to
novel, information-rich material and use this material as a source of
adaptation. Note, though, that the calculation of sentence information
in our study relies on the lexical context rather than a notion of surprisal
that implies more complex operations that build an expectation about
future words. So, the model so far does not assume error-driven
learning in calculating what constitutes information, but rather fun-
damental cognitive mechanisms of memory retrieval (c.f., Kaan & Chun,
2017).

Nevertheless, our findings reflect that lexical linguistic alignment
(or, accommodation, coordination) is not just observed within the scope
of the whole dialogue, but may also happen within shorter units, i.e.,
topic episodes (c.f., Reitter & Moore, 2014). The relatively large dis-
crepancy of sentence information at the beginning of topic episodes”
suggests that the two interlocutors diverge at first in their linguistic
choices and later become aligned (coordinated) towards each other as
the topic develops. It seems that when initiating a new topic, inter-
locutors can no longer rely on the previously achieved aligned local
lexicon. Linguistic style at all representational levels (lexical, syntactic,
information density, semantic and syntactic complexity, and so on) may
be reset or at least reduced. This is a prediction inferred from the ob-
servation of converging sentence information, which suggests new ex-
periments to test such a hypothesis of the scope of alignment.

The convergence of sentence information between the interlocutors
in two roles suggests an automatic process by which the interlocutors
coordinate the information content of their production with what they
have perceived from their partners. This coordination at information
content level can be related to alignment that is found at other higher
levels of linguistic representations, such as speech rates (Webb, 1969),
or the intent of the speech acts (Wang, Yen, & Reitter, 2015). More
abstract yet, the fragmented topic episodes in dialogues can be seen as
the locus where interlocutors build temporarily shared understanding
(Linell, 1998). This has even been characterized as a “synchronization
of two streams of consciousness” (Schutz, 1967).

2 Even discounting the low information density in topic episode 1 in Switchboard,
which may reflect conventional greetings.
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These convergence phenomena are hardly independent of each
other (we show lexical alignment within topic episodes in this paper).
For example, consider the duration of dialogue turns. Sentences of
higher information tend to be longer. The converging pattern indicates
that the gap between the two interlocutor’s turn occupancies narrows
over time. A “speaker” becomes more of a “listener”, and vice versa. We
think that even if some of these convergence processes are ephiphe-
nomena of others, they serve a purpose in creating mutual under-
standing. For example, Fusaroli, Raczaszek-Leonardi, and Tylén (2014)
and Reitter and Moore (2007, 2014) show, in different languages and
using different methods, that lexical and syntactic adaptation are re-
lated to task success. In separate, recent work, we examine higher-order
overlap of the frequencies with which interlocutors shift between in-
formation-high and information-low states (Xu & Reitter, 2017). By
transforming the metric into frequency space, we assume that several
parallel cognitive processes contribute to the ebbs and flows of in-
formation. When we take the phase shift between interlocutors into
account, we can characterize how well information contributions
complement each other in all of these frequencies. Overlap in frequency
space and complementary in phase can then predict how successful
participants are in their task, in task-oriented dialogue. The periodic
nature of information convergence (along topic boundaries) could be
seen as another link in the chain of observations of convergence at
different representational levels.

8. Conclusion

This study was motivated by a desire to describe dialogue as a
process of information exchange that can be quantified, and that is
managed by interlocutors using alignment and/or grounding. The two
models of achieving mutual understanding were not contrasted here.
Instead, we used both of them to explain the data, assuming that they
both apply to dialogue at different levels and in different circumstances.
One conclusion is that all three descriptive models are subjugated to the
topic structure of dialogue — a structural configuration that may involve
many more layers than shown in our study. Is it rules for information

Appendix A. Selection of training set for the language models
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distribution that cause speakers to align and ground, or is the in-
formation density distribution the result of alignment and grounding?
Neither of those options needs to be the case. The different models of
dialogue are empirically related, as we show in this paper, and we argue
for basic cognitive bounds and mechanisms of general learning and
memory retrieval as an explanation of observable distance and con-
vergence in information density, alignment and the conventions of
grounding.

To reach these conclusions we measured the information density in
dialogue using the averaged per-word information within sentence,
which then led us to characterize the turn-taking in the exchange of
information between the conversation partners. We validated the
principle of entropy rate constancy in spoken dialogue, using two
common corpora. Besides the results that are consistent with previous
findings on written text, we find new patterns unique to dialogue.
Interlocutors who actively initiate a new topic tend to use language
with higher information, compared to the language of those who pas-
sively respond to the topic shift, which together shapes the convergence
of information density as the topic develops. We explain this observed
convergence of information density from the perspective of information
exchange, the process of grounding, and the alignment of linguistic
behaviors.

By showing that ERC applies to the system level rather than to the
individual speaker in dialogue, we work towards a unified perspective
where the low-level linguistic alignment behavior and the high-level
joint activity nature of dialogue are combined. This perspective may
eventually lead us to identify further systematic patterns of interaction
in verbal communication.
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We compare three different ways of training the LMs that will be later used to compute sentence information. We use two commonly used indices,
perplexity (ppl) and the number of out-of-vocabulary words (OOVs) to evaluate the performance of the LMs.

A.1. Training from external corpora

We train an LM from all the sentences in SWBD, LM gwpp, and use it to compute the sentence information in BNC. Similarly, we train an LM from
BNC, LM pnc, and use it on SWBD. It turns out that the performance of LMs is not good: When tested on BNC, the ppl of LM sypp is 266.2, with 74.1 K
OOVs. When tested on SWBD, the ppl of LM pyc is 179.8, with 141.7 K OOVs. These ppl values are pretty big, compared to the performance of the
recently reported state-of-the-art language models (Jozefowicz, Vinyals, Schuster, Shazeer, & Wu, 2016), and the OOVs also take up nearly 10% of
the words in testing set.

We also trained an LM from a larger corpus, the thread conversations in the Cancer Survivor Network (CSN), which contains about 40 M words.
When we test this LM cgy on SWBD, the ppl is 244.4 and the number of OOVs is 108.4 K. When tested on BNC, the ppl is 266.1, but there are only
7.1 K OOVs.

A.2. Non-position-wise cross-validation

We use the 10-fold cross-validation method to train LMs, but do not differentiate sentence positions. L.e., after randomly divide the corpus into 10
subsets, S; (i = 1,2,...,10), for each round of cross-validation, we just train one LM from {S;|j # i}, and use it to compute the information of all the
sentences in S; (disregarding their positions).

Within this process, we trained 10 LMs on each corpus. For SWBD, the LMs’ average ppl is 77.4 (SD = 1.9), and total number of OOVs is 13.0 K.
For BNC, the average ppl is 107.4 (SD = 15.5), and the total number of OOVs is 14.4 K.

A.3. Position-wise cross-validation

We then carry out the position-wise cross-validation that is described in Section 3.1. Now we have 100 LMs trained in each round of cross-
validation, and the 10-fold setup results in 1000 LMs for each corpus. For SWBD, the LMs’ average ppl is 89.0 (SD = 9.6), and number of OOVs is
115.0 K. For BNC, the average ppl is 84.9 (SD = 15.6), and number of OOVs is 55.4 K.
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Table B.4
Basic statistics of the segment length (number of sentences) resulted from the three segmentation algorithms.

Algorithm SWBD BNC

Mean Median SD Mean Median SD
BayesianSeg 19.7 9.0 27.0 13.1 4.0 35.1
MinCutSeg 19.7 7.0 26.7 13.1 1.0 29.9
TextTiling 9.2 8.0 5.7 10.9 10.0 7.3

In summary of the results, the LMs trained from external corpora, i.e., LM swgp,LM pnc and LM cgy, have the poorest performance in terms of ppl
and OOVs. The LMs trained by the non-position-wise cross-validation have the lowest ppls and OOVs numbers. However, to be consistent with the
previous work in methodology, and considering that the ppls of the LMs are acceptable, we decide to use the position-wise cross-validation method in
this study.

Appendix B. Alternative topic segmentation algorithms
B.1. Descriptive statistics

First of all, we compare the statistics (mean, median, and standard deviation) of the length of topic episodes (number of sentences) resulted from
the three algorithms (Table B.4). It shows that the segments generated by BayesianSeg and MinCutSeg are longer in length, but with larger SD.
TextTiling generates shorter segments with smaller SD. We also notice that BayesianSeg and MinCutSeg generate much smaller median values
(4.0 and 1.0) in BNC, which potentially undermines the validity of these two algorithms because it is infeasible to consider a single sentence as a
“topic”. On the other hand, TextTiling gives smaller mean segment length for both corpora, and a reasonable median value (10) for BNC.

B.2. Information patterns within topic episodes and near topic boundaries

One indicator of a topic shift in written text is that sentence information drops at the topic boundaries, e.g., the beginning of a paragraph
(Genzel & Charniak, 2003), etc., and before encountering the next boundary, sentence information should keep increasing. In Fig. B.7 we demon-
strate how sentence information changes within the topic episodes resulted from the three algorithms respectively. To avoid overlapping the curves,
we offset by 1 the information values of the BayesianSeg curve, and offset the TextTiling curve by —1. In SWBD, the mean segment length of
TextTiling is shorter than the other two, which is reflected by the vertical cut-off line in Fig. B.7a.

We use linear mixed-effect models to examine whether sentence information reliably increases with its relative position within topic episodes
(random intercept grouped by distinct topic episode): ent ~ inTopicPos + (1|uniqueTopicId). The models show that for the segmentation
results of MinCutSeg, the effect of the within-episode position on sentence information is significant: SWBD, 8 = 5.1 X 1072, p <. 001; BNC,
B =18 X107}, p <. 001. The models on TextTiling also show significant effect, and the results are already reported in the original manuscript.
For the segmentation results of BayesianSeg, the effect is only significant in BNC (8 = 1.2 X 107}, p < . 001), but not in SWBD (p > . 05). However,
since we do observe a pretty clear increasing trend within the first 9 or so sentences (see the solid curve of Fig. B.7a), we fit the model again just using
that proportion of data (inTopicPos < 10), which gives a significant effect: B = 5.5x 1072p <.05; if we use data in the range of
10 < inTopicPos < 20, the effect is gone. Thus, it can be said that within the topic episodes resulted from applying BaysianSeg on SWBD, sentence
information increases at first, and then drops a bit and eventually becomes stable.

Now that we can confirm that the increase of sentence information is captured by BayesianSeg and MinCutSeg, the next step is to examine
how it changes near the topic episodes, hoping to observe a significant decrease of information from the end of the preceding episode towards the
start of the next one. The decrease of sentence information from x = —1 (one sentence before topic shift) to x = 0 (where topic shift happens) can be
observed (see Fig. B.8), and further t-tests confirm the significance of the decrease: BayesianSeg on SWBD, £(9685) = 3.51, p < . 001; MinCutSeg
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on SWBD, ¢ (8124) = 6.73, p < . 001; BayesianSeqg on BNC, £(10665) = 3.49, p < . 001; MinCutSeg on BNC, (10378) = 4.80, p < . 001.

To sum up the above results, BayesianSeqg and MinCutsSeg, as the alternatives of TextTiling, can effectively capture the characteristics of
sentence information resulted from the real topic shift, i.e., sentence information drops when topic shift occurs, and gradually increases within topic
episode. Therefore, using segmentation algorithms to identify the topic shift in conversations is a valid operation. Considering the fact that
BayesianSeq utilizes word surprisal (negative log probability) as an input feature of the model (Eisenstein & Barzilay, 2008), which brings con-
founding effect to our observation of sentence information, and that MinCutSeg generates extremely small median value of segment length in BNC,
we decide to use TextTiling to present the results in the manuscript, but keep the results from the other two algorithms in the appendix.

Appendix C. Distribution of sentence information

In Fig. C.9 are the density curves and quantile-quantile (Q-Q) plots of the distribution of sentence information in and SWBD and BNC (First 100
sentences in each dialogue are selected). The density curves demonstrate two peaks and a slightly right-skewed shape. The Q-Q plots deviate much
from the dashed straight line that indicates the shape of a normal distribution.

These plots suggest that the distribution of sentence information is not gaussian. A Shapiro-Wilk normality test (Shapiro & Wilk, 1965) shows that
indeed the two distributions are significantly different from a normal (gaussian) one: SWBD, W = 0.91, p < 0.001; BNC, W = 0.91, p < 0.001.

Furthermore, we also examine the distribution of the normalized sentence information (See the definition of this normalized information in
Section 3.2.2) in Fig. C.11. The distribution of normalized information has even worse normality: the dual-peak remains in the density curves and the
Q-Q plots show very large deviations. Shapiro-Wilk tests show that they are significantly different from a normal distribution: SWBD,
W = 0.60, p < 0.001; BNC, W = 0.82, p < 0.001.

The possible reason that causes this larger deviation from normal distribution can be the way that the normalized information is computed: it is a
transformation based on the length of sentence (number of words), while the distribution of sentence length has a density curve that follows the
quasi power law (see Fig. C.10).

Next, we examine whether non-linear transformation can reduce the non-normality of the distribution. We obtain the logarithm (with base 2) of
sentence information and normalized sentence information, and plot their density curves and Q-Q plots in Figs. C.12 and C.13 respectively. Although
the density curves and Shapiro-Wilk tests indicate that the distributions of log-transformed sentence information and log-transformed normalized
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sentence information are still significantly different from a normal one, we can tell from the Q-Q plots that the logarithm transformation does

improve the normality to some degrees.

Appendix D. Normalized alignment computation

The local linguistic alignment (LLA) is sensitive to the length of utterances being calculated (Doyle et al., 2016). Longer P andT tend to result in
smaller LLA, and vice versa. We define a measure of normalized LLA (nLLA) by eliminating the confounding effect of text length. We first compute
the average LLA for all (P, T) pairs that have the same product of length (i.e., the denominator in Eq. (4)), length(P)xlength(T) = n, and for all

possible product values, n = 1,2,...:

)

(Pi, TH)E€S(n)

LLA(n) = LLA((P, Ti))

1S (n)!

(D.1)

in which S(n) denotes the set of (P, T) pairs that satisfy length (P)*length(T) = n. Then nLLA is computed by:

LLA(P, T))
LLA(length (P)x*length(T))

nLLA((P, T)) =

(D.2)

nLLA is not sensitive to length of P and T. The way we compute nLLA is adopted from Genzel and Charniak (2003), in which the normalized tree

depth and branching factor of sentences were computed.
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