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Hybrid Natural Language Processing in a 
Customer-Care Environment 
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Abstract 
CyMON is an industrial platform for one-to-one customer care 
applications. It compromises facilities to implement user-friendly web-
sites with an emotional, learning interface.  The CyMON Natural 
Language Processing Engine can understand written input and react 
accordingly. It is based on hybrid linguistic and statistical algorithms to 
analyze natural language input. Each sentence is assigned an 
appropriate contextualized meaning representation. This paper 
describes the results of an evaluation of basic pattern matching 
techniques and argues in favor of their augmentation with more 
sophisticated models taken from linguistics and statistics. The natural 
language processing techniques applied in CyMON are described in 
detail. An overview of related work is provided. 

 

1 Introduction  
Agentscape’s natural language processing modules address a broad variety of user interaction: 
chatting, informing, data mining and queries to product databases. These tasks contribute 
essentially to the functionality of portals, company sites and e-business web sites. These 
application areas are subsumed by the term Customer Relationship Management (CRM). 
Whenever an organization wishes to provide support to existing customers, raise their value or 
acquire new ones via the Internet or other interactive channels, natural language processing (NLP) 
is the key for an easy-to-use interface. The CyMON-NLP components incorporate the technology 
to understand general written input and quickly generate knowledge bases to support the 
implementation of an CRM system in a specific domain. 

The NLP modules have been integrated into two platforms: Cyb (Create Your Bot) and CyMON 
(Create your match and organizing netware). Cyb is a personal assistant application which runs on 
a user’s desktop and assists him in doing recurring tasks and in organizing his documents. 
CyMON is an agent-based platform for one-to-one CRM applications. CyMON includes features 
such as implicit and explicit profiling (data-mining), profile-matching, session-tracking, context-
driven, reactive and proactive, emotional-driven agent behavior. 

 

2 Initial prototypes 
Two major implementations of the predecessor platform Si.MON have been made. One, 
www.flirtmaschine.de, is an interactive, web community system with regularly updated content. It 
provides user profiling and a profile-driven matching engine. The topics of Flirtmaschine relate to 
a virtual flirt and partner-finding platform and are supported by journalistic life-style content.  
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The second application was an anonymous session-based informational web site for a major 
German fashion company (www.puc-online.de). A virtual shop assistant reacts to natural-language 
(textual) input and gives advice on, e.g., what kind of clothes to wear, how to remove stains or 
how to bind a tie. The functionality includes profiling and generation of reports based on given 
market-survey questions. 

 

The natural language understanding component in Si.MON works with 3000 ordered pattern 
matching rules. These reference user profile data and the current context (such as the topic of the 
page the user was currently viewing). The rules check the input sentence for the occurence of text 
patterns (preconditions), which were defined separately. A total of 10 000 such patterns were 
defined.  Patterns could contain references to other patterns and also disjunctions thereof. The 
matching algorithm evaluated each rule separately and stopped on the first hit. The system was 
implemented in Java. 

2.1 Critical evaluation of the prototypes 
A good basis for an evaluation of the initial pattern-matching approach was given by the log files 
from the Flirtmaschine project. Around 30.000 distinct input sentences and the system responses 
were gathered. 

A manual quality-oriented evaluation grouped the question-answer pairs in three categories: 1) 
Good. These answers were convincing and implied no hints on the artificial dialog situation. 2) 
Acceptable. The system did not seem to understand the question, but gave a reasonable, maybe 
pro-active answer in the situation. 3) Wrong. The answer was clearly wrong according to the 
judgement of the testers. We counted 54 percent of good and acceptable answers. There were two 
prominent reasons for wrong answers. 

Over-Generation. The recognition and interaction rules were formulated too lose in many 
occasions. This applied to regular phenomena, such as the scope of negation, which could have 
been ruled out if some more elaborate form of syntactic and semantic analysis had been used. A 
wildcard operator matched all characters except word-separators. It was used to cover suffixes 
with formulations like “H\#us\#” (matching Haus, Hauses, Häuser, Häusern..., German for: 
house}) turned out to match too many lexical items. 

Missing semantic coverage. This was a much smaller problem, because in many cases, when a 
user question was not forseen in a specific rule, a more general rule applied. After all, this led to a 
lot of acceptable, but not good answers. 

Missing lexical coverage. The Si.MON NLP patterns were built manually. Of course, a lot of 
synonyms and semantically related words were missing. The round trip time between the user 
pushing the enter button to send a question and the system displaying the answer on a client 
machine with a 64K internet connection was estimated in the range of several seconds. (The log 
files did not contain any time stamp information.) 

The manpower needed to assemble the natural language rules and patterns in Flirtmaschine 
amounted to 6 man months. 

Analyzing the corpus itself, we found that the complexity of the sentences entered into the system 
was rather low. In fact, many of the input sentences were not grammatical according to standard 
German. Referential expressions and ellipsis constructs were widely used. We found spelling 
errors and missing capitalization. 

A similar, but more superficial analysis has been done with another corpus gathered via our 
Peek&Cloppenburg application. It yielded much more domain-specific questions. The sentences 
were longer, more detailed and more often grammatically correct in comparison to the chat-
oriented Flirtmaschine. This underlines the assumption that in serious customer relationship 
management applications, users tend to be more explicit and formally correct in their questions. 
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From these results and from the business-level plans regarding the CyB/CyMON platform, we 
enumerated the following requirements for the new NLP component. 

Good precision (correctness). The answers of the system should obviously be adequate in an 
increased number of cases. 

Good recall (domain coverage). The NLP component must provide means to configure it with 
reasonable efforts to cover typical aspects of a customer relationship management domain. This 
includes product, support and company information, product-specific user profiling, analytical 
marketing. 

By choosing a tagger which could deal with unknown words, we extended the mechanisms to react 
to unknown input. A more efficient grammar writing process could also contribute to broader 
coverage. Efficient language engineering. Administrators are usually not trained linguists, but 
employees of public relations departments and trainees. They pursue a practical approach to 
language and have acquired the target language as mother tongue. An initial training time of a 
maximum of three days was expected to be acceptable in order to learn the main features of the 
system. To speed up the development, the target user must be able to select and integrate pre-
assembled knowledge components. Linguistic knowledge should be reusable. 

This requirement was met by adding: 

• a stemming component, 
• the CyMON Development Kit, a comfortable visual tool for managing and extending the 

semantic grammar, 
• a clearer grammar format and compositional semantics. 
• On the generation-side of the system, we chose to implement a unification-based selection of 

textual reactions. 
 

Multilingual Support. Domain-specific and language-specific capabilities need to be kept separate. 
The system has to be extensible in a modular way by means of language packages that provide 
basic support for different languages. By separating the concerns and by clearly defining formats 
for different databases, this requirement was met. We started with German and English as initial 
target languages. 

Domain Extendibility. Domain knowledge should be easily extended. The system should be able to 
incorporate further recognition and dialog resources. A separation between recognition module 
and reaction rules with a semantic representation connecting both led to increased independence of 
the two kinds of data and their administration. The CyMON Development Kit also supports 
importing data into the semantic grammar. Robustness. Variations in orthography, such as capital 
letters, missing or incorrect interpunctuation and spelling mistakes should be ignored to a certain 
extent. The system should pursue strategies to give convincing answers even to input with 
unknown words or phrases. 

To rise to this expectation, Edit-Distance Algorithms to loosen up pattern matching were 
integrated as well as normalization of diacritics and capitalization. 

Run-time efficiency and scalability. The system is employed in the CyMON platform. As scale it 
must handle 2000 simultaneously connected users. Furthermore, several precautions had to be 
taken to be able to downgrade the NLP system in order to integrate it also in a desktop-application 
with low memory usage and sufficiently fast response times. 

To tackle the requirement on the response-time, we implemented the NLP component in C++ 
using advanced parsing optimization algorithms. 

Application Areas. Within the domain of customer relationship management applications, the NLP 
had to address two different kinds of tasks: Domain-specific question-answering, Chatting and 
data-mining. For chatting, an increased robustness is needed, while for question-answering, a more 
detailed analysis of the input question is required. 
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3 Language technology system architecture 
 

There are two groups of components in CyMON-NLP. The Natural Language Understanding 
(NLU) component is responsible for analyzing an input sentence. It returns a semantic 
representation of the input. The natural language generation component - the Dialog Manager 
selects an appropriate answer dialog from a dialog database to a given semantic stimulus. Other 
components such as the Interaction Engine take care of steering the whole system. 

 

To configure the CyMON-NLP system, the following resources have to be supplied: 

• Domain-dependent resources: A semantically oriented grammar describing phrases and 
sentences to be recognized, and a 

• set of dialogs. These files adhere to the XML standard. 
• Language-dependent resources: Lexica and language models for tagging and stemming 

services. Statistical language models for the language identification. 
• A central configuration file. 
 
 

 

Workflow diagram of the CyMON 
language analysis component 
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CyMON-NLU follows a hybrid approach. We integrated morpho-syntactic disambiguation and a 
lemmatization (stemming) module into a semantically oriented grammar. We were able to convert 
much of the patterns and rules written in the Flirtmaschine project. Most of them serve as basis for 
the development of new domain knowledge bases. 

 

3.1 Multi-linguality: language detection 
Before the morpho-syntactic analysis is started, a statistical language recognizer tries to identify 
the language used in the natural language input. It compares parameters such as average word 
length and consonants used with language models gained from test corpora. The NLU is 
instantiated for each detected language.  The CyMON-NLU can be configured to recognize the 
language once per session or for every input. 

 

3.2 Morpho-syntactic disambiguation: the tagging service 
We decided to assign morpho-syntactic tags to each word of the input for two reasons. Ambiguity 
problems arose whenever the grammar rules were not very constrained. Many top-level rules of 
the grammar contain immediate-dominance, but not linear-precedence rules, because the word 
order of German (the language we started with) varies on regular and irregular bases.  
Constraining these rules with syntactic tags could help to decrease parsing errors and increase 
parsing speed. Another very important rationale for introducing the tagging were unknown words 
in the input. A statistical tagger (here: “guesser”) can assign tags even to unknown words by 
looking at their context and, in some cases, at hints from their suffixes. 

We implemented a solution inspired by the algorithms described in br00. Brants describes 
algorithms for a powerful statistical part-of-speech tagger. He argues that his parser, based on 
Markov models, performs better than other approaches, such as finite-state, rule-based or memory-
based taggers. 

According to his data, the Markov models yield even better results than more general statistical 
Maximum Entropy algorithms. 

As a tagset we chose the EAGLES-compliant Stuttgart-Tuebingen tagset STTS, described in 
[Schiller 1995]. This tagset contains 54 tags, grouped in 11 classes. 

We will shortly outline the data structures used to tag data as described in [Brants 2000]. The 
algorithm needs, aside of the tokenized text, two data structures as external resources. The first is a 
lexicon containing full forms of words and their ambiguity class. This ambiguity class denotes the 
list of tags the words can assume in a syntactic configuration. Furthermore, for each tag in an 
ambiguity class of a specific word, its relative probability is stored. This gives the probability a 
certain word is found, given a certain tag is encountered (P(w1|t1) with w1 being a word and t1 
being a tag). Table 1 shows an example. 

The second data structure contains probabilities of the different contexts the tags occur in. The 
tagging algorithm needs information on unigram (P(t1) ), bigram (P(t2|t1)) and trigram ( P(t3|t1,t2)  
with  t1, t2, t3  being tags occurring sequentially to words in the corpus) probabilities. This is stored 
in the language model. Table 2 shows an example. 

 
gehörte ADJA (0.2) VVFIN (0.8)  

bewegt ADJD (0.17) VVFIN (0.5) VVPP (0.33) 

weniger ADV (0.66) PIAT (0.21) PIS (0.13) 

 
Table 1: Entries from a tagger lexicon. The codes in the table denote, for each word form, an 
ambiguity class of morphosyntactic tags. E.g. ‘bewegt’ may by tagged as predicative adjective 
(ADJD), finite full verb (VVFIN) or past participle (VVPP). The numbers in parantheses 
denote the relative probability of each tag within its ambiguity class. 
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 frequency tag sequence 
unigram 4752 VAFIN 
bigram 145 VAFIN - NN 
trigram 15 VAFIN - NN - ART 

 
Table 2: Excerpt from a language model for n-gram HMM tagging. A frequency measure is 
given for each possible tag sequence. A normalized probability value can easily be derived 
from the frequencies.  

The lexicon can be augmented independently of the language models without retraining the 
corpus, provided the ambiguity classes of the words are known. In this case, the lexical tag 
probabilities must be set to a default value. 

The guessing part of the tagger relies on a third data structure: probability information regarding 
tag assignments. Tags are determined based on suffix detection. The data structures for the tagger 
are obtained by a training process, where a (manually) tagged corpus is given.  In simple terms, the 
system ‘learns’, what common orders of tags are in a sentence of a specific language. In our case, 
we used the Flirtmaschine corpus (www.flirtmaschine.de) to train the tagger. After an initial 
tagging phase using different language models, the results had to be validated and corrected 
manually. Out of 133.000 words contained in the Flirtmaschine corpus, we corrected 4.300 and 
trained the tagger. The lexicon was augmented with bigger sources and currently contains around 
64.600 entries. The language model contains probabilities for 8270 distinct trigrams. The final 
accuracy of the tagger is higher than 96 percent. 

We plan to add further entries to the lexicon. The way we want to do this is to automatically assign 
ambiguity classes to the words by looking at the their suffixes. Because this is essentially the same 
algorithm as the one the guessing module of the tagger uses, this certainly will not improve the 
tagging performance. For this reason, additional words will be validated manually. 

 

 

3.3 Ignoring morphologic alternations: the stemming 
service 

A brief look into the pattern definitions of the original Flirtmaschine implementation yielded an 
efficiency problem. 

Inflected wordforms that are semantically equivalent in the given context, had to be dealt with 
somehow. The # wildcard operator described above led to over- and under-generation, depending 
on how it was employed by the language engineer. 

In order to ignore inflection markers, users can rely on a stemming algorithm. It strips suffixes off 
from words. Because the stemmer will only normalize words for the purpose of comparison with a 
predefined pattern, the stemming service does not need to generate a linguistically proper stem. 
The implementation of this functionality relies on the tagger, since the suffixes employed depend - 
among other factors - on the P.O.S. category of the word. This information is retrieved from the 
tagging lexicon or calculated by the guesser. 

As a resource, a list of rewriting rules is available for each tag class. A rewriting rule is a search 
and replace pair. The search terms are regular expressions with the replace terms referencing parts 
of the matched string. The rewriting rules are applied in their configured order. They are executed 
immediately. A feeding relationship of rules is desired, i.e. an earlier rule may provide the context 
for a later one. Table stemmrex gives an excerpt from our rewriting rules for German.  In the 
phrase größere Autos (larger cars), they normalize the adjective to its base form groß. For irregular 
forms, a lexicon is queried. 
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# the P.O.S. tags the following rules apply to
[ADJA] [ADJD]

# Genus/Case/Number markers
(.*[aeiou].*)(e|er|en|em|es) --> \1

# Comparative / Superlative markers
(.*[aeiou].*)(er|rer|st) --> \1

# Remove Umlauts
ä --> a
ö --> o
ü --> u

    

Some simple search&replace regular expressions used to stem German adjectives.  

 

  

3.4 Identifying phrase and sentence meanings: grammars  
To calculate a semantic representation from a sequence of tagged and stemmed tokens, a parser 
has to find the proper combination of patterns. As mentioned earlier, CyMON.NLP works with a 
two-level grammar.  

The first level of rules is a list of productions with decreasing priority. These productions, called 
combinations are immediate-dominance (ID) rules. This means, they enumerate a list of other 
rules (second level rules, pattern) that have to be contained in the constituent described.  They may 
also make linear-precedence (LP) statements on the order of rule appearance. Furthermore, 
negation is possible. We have four pattern operators that can be evaluated in the combinations: 

Contain: a given pattern must be contained in the input.  

Match: the given pattern must match the input exactly.  

NotContain,NotMatch: Negations of contain and match.  

Expressions with these operators may be combined using the AND (conjunction) and OR 
(disjunction) boolean operators. It is easy to see that AND combined with Contain leads to ID 
rules, while AND combined with Match is an ID/LP statement. 

The second level grammar rules are called patterns. These patterns are meant to work at the 
phrasal and lexical level. They may reference other patterns and/or raw (terminal) text. Operators 
used at this level are concatenation (Concat) and disjunction (Any). Usually, concatenation is used 
on the phrasal level; disjunction is meant to group semantically equivalent words or patterns. 
Additionally, patterns make use of the Morph operation, which will license morphological 
alternation of the words and patterns. The parser will compare only the stems of the words. 

The CyMON-NLU parser can be categorized as a top-down look-ahead chart parser. While 
evaluating each combination in their respective order, a chart is built with information on the 
results of pattern checks. This prevents pattern rules to be analyzed twice. To further optimize the 
parsing process, an index is consulted. This index contains all known lexical words and, for each 
word, a list those combinations which reference the word. Thus, each word appearing in the input 
triggers the check of a set of combinations. 
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With this data-driven technique, the parser can rule out in the beginning most of combinations. 
However, closed-class words (functional categories such as prepositions, auxiliaries, determiners) 
had to be excluded from indexing, because they appeared too frequently. This restriction raised no 
problems in practice. Each combination must contain at least one positive condition on a word that 
is not of a functional category. Another restriction is applied to combinations that make use of 
wildcard operators. Those combinations must contain at least one non-functional word. Again, this 
restriction is not a problem with real life test sentences. 

The interpretation of misspelled words is another problem we were facing. We implemented an 
algorithm to calculate a minimal edit distance, which is a sum of all insertions, deletions and 
changes of single characters necessary to match the original word and the user input. The resulting 
value is normalized to the word length (which effectively allows more spelling errors to occur in 
longer words). Furthermore, anticipating that spelling errors occur more often towards the end of a 
word, we modified the algorithm to use the position of the character in the word as a weighting 
factor when counting the changes. 

The edit distance challenges our word index, because misspelled words will not be found in the 
index. An alternative solution we are investigating is to calculate a Soundex-like checksum for 
each word and use this code has a hash key for the index. 

Obviously, the parsing part is the most time-consuming operation of the language analysis system. 
It analyzes an average of 7-9 sentences per second (on a Pentium III/600 desktop machine) with 
our hard disk based grammar database. Running through all combinations (with indexing turned 
off) costs about 13 seconds. 

 

3.5 Building semantic representations 
CyMON-NLU semantic representations consist of three classes of elements: atoms, propositions 
and semantic terms. 

Atoms These are atomic items identifying a concept or an instance in our universe of discourse, 
such as “car”, “roadster”, “bmw318i”. They depend largely on the domain CyMON-NLU is 
configured for. In a network-based knowledge description, atoms could refer to a concept class or 
concept instance node. 

How are atomic expressions assigned? In a semantically oriented grammar, a production rule is 
used to specify the syntactical construction of a phrase and its semantically equivalent alternatives. 
That is why atomic expressions are assigned at the phrasal level, i.e. along with a pattern or part of 
a pattern. 

In a pattern, one or more semantic variables may be assigned an atomic value. This is how 
CyMON-NLU allows to assign more than one atomic identifier to each pattern. This method 
should not be mistaken for a chance to introduce alternative meanings in case of semantic 
ambiguities, i.e. homonyms. Instead, it is used to structure the meaning of a phrase. 

For example, we may include four patterns: 

• Pattern 1 matches all expressions for a BMW 318. 
Its semantics contain the assignment: prod-id:= bmw318 

• Pattern 2 matches all expressions for a Honda Civic. 
Semantics: prod-id:= hondaCivic 

• Pattern 3 matches all expressions for a roadster. 
Semantics: prod-type:= roadster 

• Pattern 4 contains a disjunction of Patterns 1, 2. 
Semantics: prod-type:= closedcar 

• Pattern 5 contains a disjunction of Patterns 3 and 4. 
Semantics: prod:= car 
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After all, each product description has three levels of specialization. Depending on the context it 
appears in, the grammar may refer one of the levels. With this mechanism, a hierarchy of concept 
classes and concept instances can be build. Even if useful in other applications, an external 
semantic network is not necessary at this level. 

A slightly different use case of the multi-value phrasal semantics would be to select several slots 
specifying properties of the object described. After all, the meaning of a phrase is by no means 
necessarily atomic. However, not all users of the CyMON-NLU will build up a hierarchy like that. 
Instead, they will rather assign only one atomic meaning to each phrase. 

Propositions. Different phrasal semantics are combined into a single proposition. This is done at 
the first level of grammar productions, i.e. in combinations. Propositions describe a speech act. For 
the semantic representation of a proposition, we use a language-independent structure that contains 
a semantic predicate and a set of slot-filler pairs. 

Values filling the slots can be atoms or strings. 

In an attribute-value matrix (known from unification-based formalisms), each name-value pair 
should be considered a restriction. Depending on the predicate, certain pieces of information 
should occur in the structure. The predicate specifies the type of the structure. Depending on the 
predicate, there is a number of mandatory and optional arguments. In the construction of a 
proposition, these arguments (slots) are filled with values from semantic variables, i.e. with the 
object identifiers from the phrases of a sentence. Alternatively, direct assertion of a value is 
possible. The assignment of strings is discussed later on. 

A typical semantic representation for the sentence 

Könnten Sie mir bitte ein paar Cabrios zeigen?  

looks like this:  

 

 
While the value of THEME is mandatory, MOOD can be left out if there is no information present 
in the sentence. Both arguments are contributed from the semantic content of the patterns. So, the 
template constructing this semantic representation is formulated like this:  

 
 

 
 
 
CyMON-NLU gives language engineers a high degree of freedom to design their own semantic 
system. In the accompanying tutorials, we encourage the use of compositional elements whenever 
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possible.  We propose a small set of predicates along with a standardized set of arguments, 
oriented towards theta roles in linguistics. However, creating a combination for each single 
proposition is possible. Arguments may be avoided; a huge number of distinct predicates will 
result. Even though such atomic propositions are easier to understand at a first glance, this will 
hinder language engineers to reuse and share parts of their grammars.  

 

Semantic terms. Input sentences can contain more than one proposition. Consider the input 

I bought this washing machine the other day, and now it is loosing water! 

Essentially, it contains two propositions: The customer bought a washing machine, and: it is 
defect, in particular, it has a leak. 

To represent these sentences, the complete semantic representation of a sentence is a semantic 
term, which is a conjunction of propositions. Other elements known from formal semantics, such 
as the disjunction operator or quantifiers have not been necessary in our current applications. Also, 
they would ask for proper model-checking when finding an appropriate reaction (see below).  The 
disjunctive semantics can be evaluated as follows: the system will evaluate each of the 
propositions and combine all actions resulting from each single proposition. 

Compared to classical methods of representing meaning, one notices that the CyMON terms make 
use of ideas from predicate logic, but restrict it in many ways. The most important difference is 
that our semantic structures are flat. Thus, this method will not do when representing semantically 
complex propositions. Nevertheless it covers a wide range of utterances, and probably all we will 
need in customer care domains. Even more importantly, it has proven to be simple enough in order 
to be used by non-trained language engineers. The same applies to the way of building up 
semantics. While compositional approaches, such as Montague’s Semantics ([Montague 1974])  or 
Discourse Representation Theory ([Kamp/Reyle 1993]) provide a maximum of re-usability, the 
way modelling is done always calls for trained computational linguists and works a quite restricted 
input language. 

 

3.6 Processing unknown input  
If an unknown word occurs in a relevant position of the input, it will be matched by a restricted 
wildcard. The word is stored in the semantic representation as a value of string type. Thus, the 
semantic representation is not restricted to contain only semantic concepts. 

User input: Where can I find a(n) +UnknownProduct+/NN? 

The wildcard expression in this sentence will match one or more words tagged NN and store the 
phrase in a variable named UnknownProduct. This variable can be referred to lateron when 
constructing the semantic representation: 

 
 
So, along with the known semantic content, a phrasal content can be stored. Even though the 
system does not know the ‘semantic’ content of a phrase, it is still able to identify its syntactic 
function and thus restrict the morphological variation. We expect the user to enter mainly 
grammatical phrases. If a neologism is entered here, the system will use it in its answer as well. 
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This allows for easy construction of ELIZA-like dialogs. For example, a convincing answer for the 
situation described above would be 

Answer: Unfortunately, we don’t carry %UnknownProduct%. But I can present you a list of 
product categories to choose from. 

Problems arise if the morpho-syntactic features of the unknown word cannot be guessed. This is a 
clear limitation of the system which could be ruled out with a more detailed. First investigations 
about this have been made in [Tufis 2000]. 

 

3.7 Reaction-finding / generation 
The search for a correct reaction is, similar to the ordered evaluation of grammar rules, an iterative 
process. The CyMON Dialog Manager tries to compare the given semantic representation of the 
input with a basic semantic representation attached to a possible output reaction. The check is done 
for all reactions in a list; the first matching one is accepted. 

The comparison of both semantic representations, that of the input and the one aligned with the 
output, is defined as a subsumption relationship. An input representation SemQ is subsumed an 
reaction representation SemA, iff 

• The predicates SemQ and SemA are identical 
• Each argument of SemA is present in SemQ and has the same value in both representations. 
 

This subsumption check assures that additional information may always be added in the analysis 
grammar; so adding information to the query will expand the search space. In contrast, the 
representations attached to system reactions are restrictive. So, there may be reaction conditions of 
different specificness. As in the semantic grammar, the reactions with the specific conditions are 
put first in the list. 

Depending on the interaction model, a reaction is defined by a set of further statements, which are 
executed by the state-machine reasoning engine. Alternatively, if the neural network is being used, 
the triggering semantic representation will activate a network node. 

For chat-like conversations, a reaction can be given immediately. For database enquiries, the 
respective interaction engine will carry out a predefined sequence of actions. It will access the 
arguments from the semantic representation.  
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Figure 3: For given input semantics, an appropriate reaction is searched. The first satisfied 
subsuming reaction condition is R4.  

 

 
 

 

4 CyMON Development Kit 

4.1 Grammar editor 
Users can create the grammars by means of a graphical user-interface (GUI). It provides a 
hierarchy to group and structure production rules. The modular architecture of the CyMON system 
is mirrored in the Development Kit. Language-specific data are kept in ready-to-use components 
outside of the model. The external modules compromise tagging models and the stemming 
algorithms. 

The domain-specific semantic grammars can be edited directly in the CDK. A special extension 
was created to make knowledge extension as intuitive as possible. A linguistic assistant asks the 
user to input a sample sentence. This is analyzed using a tagger and a nominal phrase extractor. 
Known grammar rules which apply to parts of the input are recognized. Ambiguities in the 
analysis are ruled out manually. For new parts of the input, extra grammar productions are created 
automatically. 

All components of the system can be configured through a central configuration file. 

 

5 Evaluation of CyMON.NLU 
Regarding engineering effort, we verified that an implementation of a test scenario could be done 
in about 4 man/weeks. The stemmer led to a significant decrease in the time needed to enter 
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wordforms; the compositional semantics proved advantages in reusability of patterns. An 
evaluation of the new runtime system is still under way. Functional tests of the system will, 
however, always be run on an instantiation of the technology, i.e. a domain-specific knowledge 
base. To a great extend, the recognition capabilities relate to the knowledge base. 

 

 

6 Related work 
 

Alicebot ([Wallace 1999], alicebot.org) specifies an open Markup Language, called AIML. It 
works with stimulus-response rules, which include pattern-based natural language analysis. Some 
morphological alternations are integrated, as well as rewriting-techniques. Regarding natural 
language, the specification has a focus on dialog tracking. ALICE has been implemented and used 
in various demo applications. 

Among the industrial projects, Artificial Life’s WebGuide (www.artificial-life.com) is a a web-
based configurable smart bot for natural language-based user interactions. It can understand 
natural language input and integrates emotions. 

Autonomy’s Kenjin (www.autonomy.com) is a client-side assistance software that proactively 
learns and proposes relevant content to the user. It has the ability to link the user’s personal 
knowledge into a dedicated community to find users with similar interests. Autonomy’s approach 
is purely statistical. The Portal-in-a-Box package is a related portal platform with knowledge 
management capabilities. 

The Cyc product family (from Cycorp, www.cyc.com)  is based on a big multi-contextual 
knowledge base, designed to capture a large portion of what we normally consider consensus 
knowledge about the world. At the same time it provides an inference engine, a set of interface 
tools, and a number of special-purpose application modules supporting context-based knowledge 
management and querying. A dedicated script language is specified as the knowledge 
representation language with Cyc. The Cyc products contribute to the creation of intelligent bots. 

Network Query Language (www.nqli.com) is an interpreted scripting language that enables rapid 
development of bots, spiders and intelligent agents. It provides learning, but no NLP. 

Novomind IQ (www.novomind.de) is a development platform for customer care agents. According 
to the company’s presentations, the modular architecture should enable the construction of 
individually tailored personal agents for different application contexts. 

Vista’s Virtual Friends (www.virtual-friends.com) are avatars designed to assist customers in their 
shopping activities on a specific web site. The technology has primitive natural language interfaces 
(spoken/written). 

KiwiLogic (www.kiwilogic.de) offers a Windows-based bot construction kit with a simple, pattern-
matching based Natural-Language-Understanding system. 

Several other “light” bots, which reside on a user’s desktop, are available for low prices, such as 
BonziBuddy (entertaining agent with internet/calendar utilities, www.bonzi.com) or Agentscape’s 
Cyb (multi-purpose, extendible personal desktop assistant, www.cybs-garage.de). 

 

7 Further work 
A replacement for the grammar-based analysis engine is currently in development. It will provide 
means to find answers in relational databases using graph-theoretic operations on a knowledge 
network. Input preprocessing will be done with the existing tagger and a rule-based NP chunker. 
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8 Conclusions 
We have shown how industrial natural language analysis and lingware development can be 
improved significantly with an augmentation of  pattern matching techniques by parsing with a 
simplified semantic grammar, statistical tagging algorithms and rule-based stemming functions. 
We have demonstrated a semantic representation formalism that can be used by untrained 
language engineers. Finally, we have described a unification-based answer finding technique with 
template-based natural language generation.  

We believe that linguistic analysis techniques (both rule-based and statistical) provide means to 
overcome some of the deficits of pattern-matching based dialog systems. 
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