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This topic presents work on computational models of memory as memory is used in the 
context of different tasks.  The five papers we include were all presented at the 2016 
International Conference on Cognitive Modeling, held at Penn State in University Park, 
Pennsylvania.  They represent a selection of the best work on memory presented there. 

The work we selected demonstrates how empirical data and modeling methodologies at 
different levels of representation—from neural architectures through cognitive 
architectures to mathematical models—can facilitate the study of cognitive processes.  
The breadth of methods is remarkable, but it is juxtaposed with an aim to converge on a 
unified theory of the mind that can explain the constraints affecting any experimental 
task.  Three of the papers present contribute to modeling in the ACT-R cognitive 
architecture and in related ones; the model in one paper is situated within a neural 
architecture; all of the studies have implications for models for memory. 

(a) Parker and Lantz, in their contribution, model grammatical acceptability in language 
comprehension. Their model is a cognitive, as opposed to a linguistic one.  The authors 
program a new way of encoding linguistic knowledge in memory, and they integrate it 
with ACT-R.  This way, they can reuse an existing ACT-R model of language 
comprehension and test it.   

There are many rewarding aspects of this work: it reuses rather than reinvents the prior 
model, it relates its mechanisms to a cognitive architecture, and perhaps most 
importantly, it is an integrated account of linguistic performance and general cognitive 
resources.  Their memory account is interesting for another reason: holographic memory 
systems (e.g., Jones & Mewhort, 2007) provide distributed semantic representations 
related to Landauer's Latent Semantic Analysis (Landauer, Foltz, & Laham, 1998), and 
they relate their model to the representation of word embeddings, which map words to a 
high-dimensional vectors, and which have been remarkably successful in the world of 
computational linguistics in recent years.  
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(b) Thomson and colleagues solve an open problem in ACT-R's model of learning the 
cues in cue-based memory retrieval: associations between memory items can be learned, 
but prior learning accounts have failed to balance long-term and short-term learning and 
forgetting effects.  Their model accounts for a standard result concerning spreading 
activation: the fan effect. 

(c) Veksler and colleagues contrast slot-based and decay-based models of visual working 
memory in an eye-tracking experiment that leads to a modeling analysis (as opposed to 
hypothesis testing).  Their continuous resource model adopts frequency and recency 
effects from declarative memory in ACT-R, and it turns out to provide, by far, the best 
model fit to data on a visual working memory task. 

(d) Li and Kohanyi examine how to incorporate large-scale knowledge-bases such as 
WordNet and DBPedia into a cognitive model of the Deese-Roediger-McDermott false 
memory task.  Their verdict is not all-around positive, but very useful to cognitive 
modelers nonetheless: the assumptions made by the designers of these ontologies do not 
necessarily correspond to behaviorally evident relatedness between concepts.  The 
authors are able to provide some theoretical and practical guidance. 

(e) Duggins et al. use a spiking neural network model of working memory to predict the 
reaction to two drugs known to affect working memory (guanfacine and phenylephrine).  
The model can provide explanations at the biophysical and behavioral level, and it can be 
used to computationally simulate a hypothesis about the mechanism of action of these 
drugs, that is, that they change the firing rate of neurons in the prefrontal cortex.  The 
results compare well to empirical data from monkeys on a memory task.   

Acknowledgments 
The papers included here were initially presented at the International Conference on 
Cognitive Modeling held in August 2016 at Penn State.  The editors of this topiCS issue 
were also co-chairs of the conference. Reitter’s work on this issue was supported in part 
by the NSF (BCS-1457992); Ritter’s in part by ONR (N00014-15-1-2275); the 
conference itself was supported by the NSF (BCS-1613241). 

References 

Jones, M. N., & Mewhort, D. J. (2007). Representing word meaning and order 
information in a composite holographic lexicon. Psychological review, 114(1), 1. 

Landauer, T. K., Foltz, P. W., & Laham, D. (1998). Introduction to Latent Semantic 
Analysis. Discourse Processes, 25, 259-284. 

Articles in this issue

Li, J., & Kohanyi, E. (2017). Towards modeling false memory with computational 
knowledge bases. Topics in Cognitive Science, 9(1). 102-116. 

 !2



Thomson, R., Harrison, A. M., Trafton, J. G., & Hiatt, L. M. (2017). An account of 
interference in associative memory: Learning the fan effect. Topics in Cognitive 
Science, 9(1). 69-82. 

Duggins, P., Stewart, T. C., Choo, X., & Eliasmith, C. (2017). The effects of guanfacine 
and phenylephrine on a spiking neuron model of working memory. Topics in 
Cognitive Science, 9(1). 117-134. 

Veksler, B. Z., Boyd, R., Myers, C. W., Gunzelmann, G., Neth, H., & Gray, W. D. (2017).  
Visual working memory resources are best characterized as dynamic, quantifiable 
mnemonic traces.  Topics in Cognitive Science, 9(1). 83-101. 

Parker, D., & Lantz, D. (2017). Encoding and accessing linguistic representations in a 
dynamically structured holographic memory system. Topics in Cognitive Science, 
9(1). 51-68.

 !3


