
Hybrid Planning and Realization 
of Coherent Utterances for
Multimodal Natural Language 
Dialogue Systems

a thesis submitted to

University College Dublin

for the degree of

Master of Science
in the Faculty of Science

by David Reitter

supervised by Dr. Fred Cummins
internal evaluator: Henry McLoughlin
external evaluator: Prof. Robert Dale

November 2004

based on research conducted at

MIT Media Lab Europe
and the 

Department of Computer Science
University College Dublin,
Head of Department: Prof. Barry Smyth



Contents

1 Introduction 7
1.1 Multimodal Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Human-human communication is multimodal . . . . . . . . . .7
1.1.2 Human-computer interfaces lacks this kind of multimodality. . .7
1.1.3 Why? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.4 A solution: adaptive mobile multimodal interfaces . . . . . . .8
1.1.5 Forms of multimodal communication . . . . . . . . . . . . . .10
1.1.6 System components and processes addressed in this thesis . . .11

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
1.2.1 Static Multimedia versus Interactive Multimodality . . . . . . .12
1.2.2 Adding interaction modes to a system . . . . . . . . . . . . . .13
1.2.3 Principled Generation . . . . . . . . . . . . . . . . . . . . . .14

2 System Overview 16
2.1 A Virtual Personal Assistant . . . . . . . . . . . . . . . . . . . . . . .16
2.2 Process flow in a dialogue system with multimodal generation . . . . .17
2.3 Requirements for the generation task . . . . . . . . . . . . . . . . . . .19
2.4 “UI on the Fly” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 The generation process . . . . . . . . . . . . . . . . . . . . . .21
2.4.2 Positioning UI on the Fly in Natural Language Generation . . .24
2.4.3 Requirements for the Dialogue Manager . . . . . . . . . . . . .24

2.5 Summary: Contributions of this thesis . . . . . . . . . . . . . . . . . .25

3 Hard Constraints in Multimodal Functional Unification Grammar 27
3.1 Tree structures in linguistic and visual interfaces . . . . . . . . . . . . .28
3.2 Introduction to MUG . . . . . . . . . . . . . . . . . . . . . . . . . . .29

3.2.1 How grammars are used in generation . . . . . . . . . . . . . .29
3.2.2 A restrictive blackboard architecture . . . . . . . . . . . . . . .31
3.2.3 What grammars specify . . . . . . . . . . . . . . . . . . . . .32
3.2.4 Attribute-value matrices in MUG . . . . . . . . . . . . . . . .34
3.2.5 Designating constituents in AVMs . . . . . . . . . . . . . . . .39
3.2.6 Grammar components are applied recursively to constituents . .40
3.2.7 Structure sharing passes information . . . . . . . . . . . . . . .43
3.2.8 Grammar application algorithm . . . . . . . . . . . . . . . . .46
3.2.9 Functional expressions in MUG . . . . . . . . . . . . . . . . .47
3.2.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51

2



Contents

3.3 Semantic dialogue act representation in the Virtual Personal Assistant .51
3.3.1 Types of dialogue acts in the Virtual Personal Assistant . . . . .51
3.3.2 Underspecification in the dialogue manager interface . . . . . .53

3.4 The syntax of the MUG formalism . . . . . . . . . . . . . . . . . . . .56
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

4 Soft Constraints: Trade-Off Decisions in a Fitness Function 59
4.1 Economy and Efficacy . . . . . . . . . . . . . . . . . . . . . . . . . .60
4.2 Effort and efficacy in linguistics . . . . . . . . . . . . . . . . . . . . .62
4.3 Weighting the constraints . . . . . . . . . . . . . . . . . . . . . . . . .63
4.4 Situation profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
4.5 The fitness function . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
4.6 A first evaluation of the fitness function . . . . . . . . . . . . . . . . .66

4.6.1 Experimental configuration . . . . . . . . . . . . . . . . . . . .67
4.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
4.6.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
4.6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . .70

5 Coherence 73
5.1 Cross-modal coherence . . . . . . . . . . . . . . . . . . . . . . . . . .73

5.1.1 Motivating cross-modal coherence . . . . . . . . . . . . . . . .73
5.1.2 Examples of cross-modal coordination . . . . . . . . . . . . . .76

5.2 Discourse coherence . . . . . . . . . . . . . . . . . . . . . . . . . . .79
5.2.1 Different aspects of discourse coherence . . . . . . . . . . . . .80
5.2.2 Centering Theory . . . . . . . . . . . . . . . . . . . . . . . . .81
5.2.3 Pronominalization rule . . . . . . . . . . . . . . . . . . . . . .85
5.2.4 A parametric, evolving theory . . . . . . . . . . . . . . . . . .85
5.2.5 Centering in MUG . . . . . . . . . . . . . . . . . . . . . . . .87

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89

6 Generation as a Constraint Optimization Problem 91
6.1 An efficient implementation . . . . . . . . . . . . . . . . . . . . . . .92
6.2 Formalizing the problem - the search tree . . . . . . . . . . . . . . . .92
6.3 Depth-first backtracking search . . . . . . . . . . . . . . . . . . . . . .94
6.4 Methods based on a heuristic function . . . . . . . . . . . . . . . . . .95

6.4.1 Breadth first, best first and beam search . . . . . . . . . . . . .95
6.4.2 Branch & bound . . . . . . . . . . . . . . . . . . . . . . . . .96
6.4.3 Leaf ordering (local best first search) . . . . . . . . . . . . . .97
6.4.4 Iterative deepening . . . . . . . . . . . . . . . . . . . . . . . .97

6.5 Further methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
6.5.1 Variable reranking (or: minimum remaining values) . . . . . . .99
6.5.2 A* search. . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
6.5.3 Grammar compilation. . . . . . . . . . . . . . . . . . . . . . .100
6.5.4 Obtaining an initial bound by choice classification. . . . . . . .100

3



Contents

6.5.5 Improving the fitness heuristic by regression. . . . . . . . . . .101
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

7 The MUG Workbench: A Development Environment for Generation
Grammars 102
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
7.2 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
7.3 Debugging grammars . . . . . . . . . . . . . . . . . . . . . . . . . . .102

7.3.1 Inspecting variants of output: variants view . . . . . . . . . . .103
7.3.2 Tracing the steps of the generation algorithm: log view . . . . .105

7.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
7.5 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

8 Conclusion and Outlook 108
8.1 Content selection depends on further factors . . . . . . . . . . . . . . .108
8.2 Playground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
8.3 Models based on empirical knowledge . . . . . . . . . . . . . . . . . .109

4



Preface

There were three main factors attracting attention during the work behind this thesis.
A research labdetermined to do unseen and off-beat things with multimodal

human-computer interaction.A research and development projectwith European com-
mercial, academic and charity partners who firmly planned to “tackle the holy grail of
conversational speech interfaces” with some serious engineering.And a thesis supervi-
sor with an active interest in phonetics, cognitive science and speech interfaces.

Me, the author, started out somewhere in between these forces, weighting the
constraints announced by each of them, violating quite a few. Now, I hope to have
something to offer to all of them.

My supervisor deserves my foremost thanks. Fred Cummins helped me formulate
a coherent story that incorporates originally different strands of research. His guidance
in balancing project and thesis work, and in finally preparing this thesis is greatly ap-
preciated. Fred gave me the inspiration to understand the work from a greater context,
which is probably what turned the process into a rewarding experience.

I would like to thank Robert Dale and Henry McLoughlin for serving as examiners
of this thesis. Robert kindly invited me to spend time with his group at Macquarie
University; so did Chris Schmandt at MIT, and I am grateful to both of them.

My colleagues at Media Lab Europe were Michael “Mick” Cody, Nick Hawes,
John Kelleher, Eva Maguire and Erin Panttaja. I am thankful for their inspiring discus-
sions. Jan Wielemaker and Vitor Santos Costa quickly repaired problems in the technical
platforms needed to implement the generation algorithms. My colleagues in the FASiL
project, including (but not limited to) Hans J.G.A. Dolfing and Kerry Robinson worked
on the application context that made this work worthwhile.

This context was the Virtual Personal Assistant. Even though the system shown
in this thesis ended up incorporating many more ideas, which aren’t really needed by a
personal information management system, the original inspiration stems from the Assis-
tant as dialogue system with a spoken and graphical user interface. Both the European
Commission and Media Lab Europe provided funding for it under the FASiL grant.

Andrea Chew made me forget my work. I am glad that happened, too.
Despite all the support I received in doing the job: any remaining mistakes are

mine. One of them is already known. Jackie from Chapter 5, is indeed from South
Africa. But the pets in her family are the works of phantasy.

5



Abstract

The output of multimodal human-computer interfaces is what this thesis is concerned
with. Rather than hard-coding graphical and spoken representations, methods are intro-
duced that plan and realize coherent output, appropriate to the situation and the device.
The generation system expects a mode- and language-independent representation, as it
can be supplied by the dialogue management component of a dialogue system. The
generator then assembles mode-specific rendering instructions simultaneously for each
mode with the aid of a unification-based functional grammar.

The approach proposed in this thesis abandons the canonical structure of pipelined
planning and realization in natural language generation, in favor of hard constraints
formulated in a grammar, and soft constraints that allow for the gradual adaptivity of
the output. The grammar is constructed to ensure the coherence of output in different
modalities, whose output is generated in a synchronized fashion rather than by separate,
mode-specific generators. The soft constraints follow some of the Gricean maxims by
incorporating two counteracting communicative goals: efficacy and efficiency. A fitness
function encoding these goals takes into account situation- and user-specific factors, such
as distractions in a single mode or the user’s sensory impairments. The function leads to
the selection of an appropriate output from the variety of potential outputs generated by
the grammar. It is evaluated in a study with human subjects.

The thesis presents a unification based, hybrid grammar formalism which can
combine pre-fabricated phrases and linguistically motivated grammar fragments, and
an associated algorithm which integrates the formulation of grammars that lead to cross-
modally coherent output. Methods are compared to efficiently implement a control strat-
egy, combining hard and soft constraints as a constraint optimization problem.

The cross-modal coherence implemented by the grammar formalism is motivated
by known phenomena, such as cross-modal priming, or alignment between interlocutors.
To optimize discourse coherence, central ideas of Centering Theory are implemented
using the grammar formalism.

Finally, novel methods and a ready-to-use implementation are introduced which
allow user interface developers to inspect, maintain and extend grammars. The for-
malism and generation implementation is demonstrated with a grammar for a mobile,
multimodal application, the Virtual Personal Assistant.

6



1 Introduction

1.1 Multimodal Interfaces

1.1.1 Human-human communication is multimodal

When we think about how humans communicate, speech comes to our minds. But there
are more information channels that we use to transmit messages – gestures for example.
The first thought might be a wildly gesticulating driver who is furious about not getting
his right of way in jammed city traffic. However, gestures play a role when humans talk
to each other directly, even if they are more subtle. We turn our upper bodies towards
objects, when we talk about them. We raise our eyebrows in disbelief. We direct our
eyes towards a corner of our field of view when we think hard. Whether that helps
the thinking or not, it communicates a message. Body posture and facial expressions
transmit signals, too, and they are coupled with speech.

Speech and gestures take place simultaneously or with a short delay. There is also
a good deal ofcoordinationon various linguistic levels between the modes. For example,
deictic pronouns such asthis are sometimes used in conjunction with pointing gestures.
A recent study has found a correlation between shifts in body posture and rhetorical
moves in dialogue (Cassell et al., 2001). Verbal communication between hard-of-hearing
persons relies heavily on lip-observation, but even people without sensory impairment
may find a phone conversation in a non-native language much harder to follow than
talking to someone, when the full range of channels is available for communication. We
speak ofcoordinated multimodality.In these cases, information in different modes is
communicated mostly redundantly. However, given that, for example, discourse markers
such aswhileor andcan have very different rhetorical meanings, visual communication
may help disambiguate speech. An ironic sentence paired with a sarcastic smile could
serve as another example of multimodal communication that is complementary rather
than redundant.

1.1.2 Human-computer interfaces lacks this kind of multimodality.

So, multimodal communicationper seis no new idea in interaction among humans. One
would think that human-computer interfaces would have picked up on the principle.
After all, the communication modes are readily available: graphical user interfaces, lip-
synced and whole-body avatars on color screens, spoken language and other sounds
through speakers.

Some form of multimodality is quite common: keyboards, mice, sometimes even
speech is used to interact with a desktop PC. Common output channels include the screen

7



1 Introduction

and audio. However, user input is often not coordinated – it happens in sequence. The
only helpful coordination of output in widespread user interfaces areaudio icons, which
are used to augment graphical user interfaces. However, unless they give simple, imme-
diate feedback that some user input was inappropriate, these icons are purely redundant.
They might catch a user’s attention, but they would rarely communicate anything that is
not clearly visible on the screen anyways.

1.1.3 Why?

There are several reasons for the lack of coordinated multimodality in human-computer
interfaces. One is that full, complementary multimodality is not always appropriate.
Consider the use of cell phones in restaurants. Cell phones are multimodal, as they can
ring, vibrate, display things on the screen and just use the built-in speaker to transmit
voice. If configured wrongly, full multimodal interaction is annoying to the environment
(and its user). On another account, using the screen of a handheld computer (Personal
Digitial Assistants) while on a bumpy bus ride is nerve-wracking, which means that
multimodal devices may never rely on all modes being available to the user at all times.
Other concerns include privacy, which is best exemplified by a voice-driven interface to
an e-mail application, when used in a quiet, put populated train.

One solution to address these concerns would be to offer separate devices which
offer interaction that is suitable to the task they are designed for, and for the usage
situations. Multimodality may be configured. This is what can be found in today’s cell
phones, PDAs, and immobile devices such as desktop computers.

Unfortunately, this solution has its limitations, in particular in mobile situations.
The screens of PDAs are too small for many tasks, in particular when it comes to in-
putting information. Voice-driven interfaces suffer from bad recognition, in particular
in noisy environment or for large domains, for example when names are to be recog-
nized. Generated computer-speech from a text-to-speech system (or in form of recorded
prompts) tends to be lengthy and overly specific. Formulated in technical terms, the
communication channels are noisy, unreliable and slow.

1.1.4 A solution: adaptive mobile multimodal interfaces

The problems of multimodal interfaces mentioned here are not a naturally given. Adap-
tivity is a solution that enables an interface to break through pre-defined interaction
patterns. In our context, a multimodal interface may choose dynamically, which modes
are used to interact with the user. Rather than just choosing one mode, this is much more
of a gradual choice, changing the density of information in the channels. One means
of such adaptation is to vary the length of the output. The more important information
is displayed on the screen, and voice prompts are very short, if in a situation like the
quiet train mentioned. It is worthwhile to remember that even a short voice prompt may
improve the flow of interaction, given that the screen may not be perfectly visible in a
bright environment.

8



1 Introduction

Such choices are trade-off decisions. Several factors are to be considered, and
among a range of possible options, the interaction is chosen that seems to be the best
one in the given situation.

In short: coordinated multimodal output must respect the situation of the user.
In this thesis, I address questions in regard to dynamically generated, appropriate

interfaces. While the techniques I present are not generally restricted in the modes,
I focus on three particularly useful modes for the output. Firstly, computer-generated
speech, to convey information intuitively, suitable for users ranging from the novice to
the seasoned one. Secondly, I use natural language shown on a screen, which may help
novice users. Thirdly, I use graphical user interface elements such as buttons, tables or
text input field on a screen.

These modes can communicate not only much necessary information for mobile
applications, they also complement each other. As mentioned, spoken input is difficult
to recognize in case of a large search space, such as names from a corporate address
book comprising thousands of entries, or similar-sounding names. With a screen, users
can access the screen to pick the recipient of an e-mail address, but may make use of the
voice mode to enter commands. In output, the pronunciation of foreign names is often
difficult. A screen helps. In the case of referring to persons, e-mails or other entities
relevant to the interaction, it is often less time-consuming and easier to understand, if
these entities are highlighted on the screen, instead of verbally described. In contrast,
it may also make sense to use redundant output – for example, in acoustically noisy
environment with bright sunlight, where the computer speech is difficult to understand
and the screen hard to read.

I formalize the idea ofwhat is appropriatein a particular situation using basic
communication principles. While we would like to convey as much information at a
time, we also try to foresee how difficult it will be for our interlocutor to understand what
we say. We try to be as useful and convenient as possible. Following these principles,
we decide (in part)what to includein our message, andhow to convey it.

The two dynamic models that influence these decisions describe the usage situ-
ation and the device properties. I formulate the models in a simple way, by looking at
how useful output in a particular mode may be to the user, and how costly in terms of
annoyance or privacy violation it may be.

It should be clear by now that a system must be flexible in order to adapt well.
The need for flexibility has major consequences for the design process of a user interface
(UI). The common design process for interfaces involving graphical UI elements (wid-
gets) or natural language means that the output is handcrafted. The designer maintains
fine-grained control over what the output is going to look like in the system. Flexibility
is not wanted. There are reasons for this, which lie mainly in the consistency and the
good user experience that is needed in a good interface.

In the approach put forward here, we still need a designer to ensure consistency
and user experience. However, instead of designing the whole interface in one part,
the interface is split up in several elements. Elements may consist of smaller elements.
Wherever an element is used, there may be an alternative – this is where we allow the

9



1 Introduction

system to make a situation-specific choice. In computer science, this design specification
is called agrammar. The grammar is essential ingeneratingoutput.

Where interfaces are generated on the fly, there, naturally, can be a good deal of
change on the screen. For large screens, such as used in laptops, this would be highly
demanding. We, in contrast, address devices that have limitations in their output chan-
nels, such as a small screen, or slow speech synthesis.1 Thesebottleneck devicesare
particularly interesting candidates for adaptivity, as they allows us to work around the
deficiencies of communication in the specific modes.

1.1.5 Forms of multimodal communication

Defining multimodal interaction, we need to differentiate between2

• Mode: How information is encoded – the same piece of information may be en-
coded in different modes. For example, the mass-medium radio uses speech and
music as common modes. Many authors call thismodality.

• Channel: This term refers to the different technological means used to deliver
content to the user, often just for a single mode. For example, a channel can
include the browsing platform, a specific navigation paradigm, a data exchange
protocol such as HTTP and server-side technologies. In the radio example, the
channel could consist of radio waves, a transmitter and a client-side receiver and
headphones.

We can distinguish several kinds of interaction according to their use of modes:

• Uni-modal input/output:The system offers one predefined particular input mode
and one other output mode.Example: Speech In / Data Out systems that use
speech mode as input and text, graphics as output mode.

• Sequential multimodal interaction:This is the simplest level of multimodal in-
teraction. From a set of modes, the user may either choose a particular one in a
specific dialogue state (user-directed multimodality), or, there is only one mode
available for input and output, respectively (system-directed multimodality). The
difference compared to uni-modal interaction is that during the communication se-
quence as a whole, more than one input/output mode is used. Inputs from modes
are interpreted separately. (W3C, 2000)

Example:Calling a call-center, where the caller needs to enter his ID number with
the keys on his phone, and then talk to an agent. Here, the mode is determined by
the system. In a window-based GUI, the user can switch windows by pressing a

1See also Kvale et al. (2001), who points out that the difference between an uncoordinated multimodal
output and a sequential multimodal output is not clearly evident when the graphical display is static
(output remains visible during times when speech is played).

2An earlier version of this section can be found in theResearch Report on Multimodal Fission and Fusion,
FASiL-Deliverable 5.1, MLE Tech. Report. Thanks to Nathalie Richardet who co-authored the report.

10



1 Introduction

key or by using the mouse. Then the system response is given in one of the output
modes. There, the user may decide which mode to use.

• Uncoordinated simultaneous multimodal interaction:Different modes are avail-
able in the same dialogue state but they are not coordinated: on the input side,
several parallel input modes are active at the same time, but only one of the input
channels is interpreted (e.g. the first input). On the output side, the output is made
in different modes, but not synchronized.

Example:A voice browser in a desktop environment could accept either keyboard
input or spoken input in same dialog state; this browser can then output speech
and graphics in one dialog state, but the two outputs are not synchronized. (W3C,
2000)

• Coordinated simultaneous multimodal interaction:Different modes can be used
at the same time and their processes are coordinated (input interpretation process
as well as the output rendering process). Here, we distinguish redundant and com-
plementary combinations of modes: the same piece of information may be trans-
mitted with different modes in parallel (redundant), or, different (but compatible)
pieces of information can be conveyed (complementary).

In this thesis, we strive to achieve coordinated simultaneous multimodality, both
in redundant and complementary combinations.

1.1.6 System components and processes addressed in this thesis

Interaction is a two-way process. While input and output may share commonalities, the
computational processes used to understand input and those used to produce output are
very different.

Multimodal systems need to integrate user input made in different modes. They
look for simultaneously made input that is compatible in some way. Verbal input, for
instance, may leave questions open, which are answered by a pointing gesture:Show me
more details about this!may be accompanied by selecting a file symbol on the screen.
The processes aroundsignal fusionare generally well understood, with the pressing
questions and main error sources lying in the recognition of the mode-specific input (i.e.
automatic speech recognition, detection of facial expressions or gestures).

The output process commonly involves determining what the system’s next move
is (thedialogue act), distributing the output to the various available modes (multimodal
fission) and producing a mode-specific representation of the dialogue act (realization).
The last step depends on the particularities of the mode used: natural language utter-
ances are composed in a way that seems to be very different from the way gestures are
combined. This idea will be revised in this thesis: I present a formalism that can realize
graphical output as well as natural language sentences. As a final step in the production
of a system utterance, output isrendered, which involves lower-level, mode- and device
hardware-oriented steps which are usually handled by specific software components,
such as text-to-speech systems or graphical user interface browsers.

11



1 Introduction

In this thesis, I will focus on the generation of multimodal output. This
comprises multimodal fission and realization. An overview of the process and how it
connects to the surrounding architecture is given in Chapter 2.

1.2 Related Work

Since Bolt’s (1980) Put-That-There system introduced cross-modal coordination in mul-
timodal user input, various projects have investigated multimodal input and output meth-
ods. In this section, I will present a general overview of recent work related to multi-
modal dialogue systems and natural language generation (NLG).

In classifying work, I turn to factors which are highly relevant to the underlying
design decisions. The task of generating static multimedia documents has different re-
quirements than the generation of interactive system outputs: the amount of content, the
type of content and its perception and, last but not least, the efficiency requirements dif-
fer. Researchers have investigated a variety of modes to be combined. The chosen mode
has an impact on the applicable domains and the way output is generated. Lastly, NLG
is a field in its own right, addressing many of the issues encountered here in a general
way.

In the past 15 years, several projects have attempted to generate multimodal in-
teraction that provides for parameterization according to user group and usage situation.
Only some simple ways of interaction have actually made their way into commercialized
end-user products. As for complementary multimodal interaction, we find touch-screens
combined with audio-feedback in interfaces of bank machines or public information ter-
minals. Redundant multimodal interaction is a common configuration option in current
desktop-environment personal computers, where messages that appear on the screen can
be read out to make the devices accessible for visually impaired users.

Most of the close-to-operational multimodal services available today are mainly
speech-centric system allowing basic speech-in-data-out interaction. Some of these sys-
tems explore this multimodal interaction on small devices as such as the iPAQ or the
Palm. Only one close-to-operational system shown here proposes a more elaborate mul-
timodal interaction, focusing on both the problems raised by the Fusion of simultaneous
inputs and multimodal Fission.

1.2.1 Static Multimedia versus Interactive Multimodality

Two projects were among the early systems that combined graphics and automatically
generated text according to the semantics of the content (rather than visual properties):
COMET (Feiner & McKeown, 1998, COordinated Multimedia Explanation Testbed)
and WIP (Andŕe et al., 1993, Wissensbasierte Informationspräsentation / Knowledge-
based Information Presentation). These systems produces technical descriptions, as nee-
ded in manuals to operate a military radio transmitter (in the DARPA-funded COMET)
or an Espresso machine or a lawn mover (in the German WIP). Other than the system
presented in this thesis, both systems implemented a content planning module, which de-

12



1 Introduction

termined a structured description of what to convey. Planning in WIP spans from large
multimodal elements of the document down to single phrases in a text. Such rhetorical
planning was also employed by Bateman et al. (2001). In COMET, amedia coordinator
then took on the job of multimodal fission: it distributed the elements of the semantics
it received to mode-specific generators. Fission and realization were separate, and re-
alization was specific to the mode. In WIP, mode-specific generators and presentation
planners needed to communicate bi-directionally. The system presented in this thesis
avoids the modularization, so that decisions taken in during fission and realization can
influence each other. Both systems used a static domain knowledge base similar to the
one presented in Chapter 3.

These systems generated static documents. Dynamic user interfaces represent a
new, interactive communication mode. The application usually requires real-time re-
sponse times. For this reason, deterministic techniques have been predominant, for
example, transduction or structured input via XSLT. SmartKom (Wahlster, 2002) and
the ongoing COMIC (Moore et al., 2004, Conversational Multimodal Interaction with
Computers) are examples of such system.

The SmartKom produced a platform forinteractivemultimodal systems, with a
focus on the development of self-explanatory and user adaptative interfaces. SmartKom’s
multimodal, natural language interface combines speech, gesture, and facial expressions
for input and output, both in stationary and mobile contexts. In one of the SmartKom
applications, users received help in navigating a database of TV programs and setting
up a digital video recorder. COMIC demonstrated a system that attempts to consult the
user on the choice of bathroom tiles. The generation component in COMIC is realized
as a two-step process.Fissiondistributes content across modalities and generates mode-
specific markup. A natural language realizer uses both linguistic realization and canned
text, with a focus on the prosody in the output as a result of information structure. Other
modes include a lip-synched avatar and visual actions on a screen, showing the various
forms of tiles and a simulated 3D bathroom.

1.2.2 Adding interaction modes to a system

Multimodal dialogue has been gradually evolving from graphical interfaces, which were
first augmented with audio icons3 and then with voice elements. Examples include
SALT4, which is a set of voice navigation tags to be added to existing HTML documents
(and others). On an operating system level, personal computers have been enhanced with
selected speech interaction, for example Apple Mac OS X, which recognizes predefined
voice commands and reads alerts aloud, either to catch the user’s attention or as an acces-
sibility feature. MATIS, a Dutch train timetable information service, approaches multi-
modality from the opposite direction (Kvale et al., 2001). It adds graphical output and

3Short, redundant sounds played to signal certain interface states such as questions, warnings or error
message.

4Speech Application Language Tags, http://www.saltforum.org

13



1 Introduction

pen input to what used to be a speech-only service. The system allows non-coordinated
simultaneous multimodal interactions.

The advantage of such systems is that they can be developed on top of existing
interaction infrastructure. However, as I have argued before, adaptivity is an important
feature for multimodal systems, in particular in mobile contexts. Therefore, dynamic
generation is necessary in order to delegate presentation related decisions to the system.

MUST, MATCH and QuickSet were projects that developed demonstrators which
allow for multimodal interaction. All of these systems dealt with maps in some form.
MUST (Boves & den Os, 2002, Multimodal and mUltilingual services for Small mobile
Terminals) provided a tourist guide to Paris, MATCH (Johnston et al., 2002, Multimodal
Access To City Help) one to New York City, and QuickSet was a geographical planning
system for military operations (Cohen et al., 1997).

The preference for geo-data is not incidental. Users are not naturally inclined to
use multimodal input: it depends on the particular task, and map tasks were the only task
where experimental subjects freely choose to interact multimodally (Oviatt, 1999).

Lately, further modes have been added in the interaction. Embedded conversa-
tional agents use humanoid avatars to visualize gestures, such as in SmartKom, or ani-
mated human faces with synchronized lip-movements, as in COMIC or FASiL5. Reasons
for the inclusion of such modes are usually to provide a richer user experience, add cred-
ibility to the system. On the input side, SmartKom attempts to analyze facial expressions
in order to disambiguate speech input. The value for practical use is not necessarily a
prime objective in such systems.

In the past 15 years, several projects have attempted to generate multimodal in-
teraction that provides for parameterization according to user group and usage situation.
Only some simple ways of interaction have actually made their way into commercialized
end-user products. As for complementary multimodal interaction, we find touch-screens
combined with audio-feedback in interfaces of bank machines or public information ter-
minals. Redundant multimodal interaction is a common configuration option in current
desktop-environment personal computers, where messages that appear on the screen can
be read out to make the devices accessible for visually impaired users.

1.2.3 Principled Generation

The mode-specific generation of natural language and graphical user interfaces has of-
ten been addressed independently of the surrounding systems. Often, natural language
generation takes on the task of conveying information, which is available in structured
databases, in linguistic form. These systems usually generate a discourse, i.e. a struc-
tured sequence of sentence. An example is FoG (Bourbeau et al., 1990), which produces
weather forecasts.

A step towards interactivity is taken by the ILEX system (O’Donnell et al., 2001;
Dale et al., 1998), which takes the discourse context into account. This system generates

5Flexible and Adaptive Spoken and Multimodal Interfaces: http://www.fasil.co.uk

14



1 Introduction

comparative descriptions of whiskeys or jewellery. The descriptions are not static, but
depend on which museum exhibits the user has already seen.

Natural Language Generation (NLG) systems differ greatly in the degree of lin-
guistic control they allow. They can be realized as templates with a slot filler mechanism,
or as the inverse of parsing with a grammar, where differentiated syntactic and lexical
choices are made (Reiter & Dale, 2000).

SURGE, a generation grammar for English (Elhadad & Robin, 1998), is an ex-
ample of linguistically elaborate generation, implemented in Functional Unification For-
malism (Elhadad & Robin, 1992, FUF), a grammar system that allows the encoding of
hierarchical generation paradigms (grammar rules).

While a grammar similar to FUF is used in the approach brought forward in this
thesis, I combine fine-grained realization with templates, to allow for adaptivity, while
avoiding the linguistic pitfalls or many decisions and the computational woes of a large
search space.

FoG, ILEX, and of course systems implemented in FUF are grammar-driven, with
decision making taking place in a planning phase, or by the application of grammar rules.
Recently, work has begun to modify the mechanism in which constraints6 are formulated
and applied in a grammar. ICONOCLAST (Bouayad-Agha et al., 2000) determined
layout and style and allowed users to manipulate some of the system’s constraints. Other
systems go further: their decision-making process is guided by constraints acquired from
a corpus (Knight & Hatzivassiloglou, 1995; Langkilde & Knight, 1998; Oberlander &
Brew, 2000). Sidestepping linguistic decision-making, the generator may improve the
fluency of its texts by choosing an ordering of sentences that has been most prevalent in
its training corpus, rather than selecting defaults for unspecified input.

When we turn to the generation of graphical user interfaces, we find systems with
very similar problems and similar solutions – SUPPLE, for example (Gajos & Weld,
2004). Although this system does not learn from a corpus, it has a variety of legitimate
graphical user interface designs to choose from. There is no hard and fast rule about how
to decide. Rather, the effect of a proposed output on the user and the future interaction
is simulated and used.

These systems have in common that the systems do not only try tosatisfythe con-
straints defined by a grammar. They try to optimize their solution, since some constraints
may be violated – typically calledsoft constraints. This is where the system presented
in the following chapters relates to these approaches: communicative decision-making
is an optimization process.

6A constraint is a condition that needs to hold, usually in the relationship between two information units.
A simple constraint in this context would be: if two sentences express a contrast, use a discourse
connective likehowever.

15



2 System Overview

To generate output dynamically is a task which cannot function independently of the
surrounding players of such a system. In this chapter, I will introduce the particular
application and then the general architecture of a multimodal dialogue system. The
remainder of this thesis will deal exclusively with the act ofoutput generation.

2.1 A Virtual Personal Assistant

The Virtual Personal Assistant(VPA) is software that allows users to manage their e-
mail, their personal contact database and their appointments on a small portable device
(PDA). Commonly, this application domain is calledPersonal Information Management
(PIM).

The VPA is the demonstrator of a two-year research effort among a consortium
of several academic and industrial entities active in natural language processing, human-
computer interface research and telecommunications, and two charities contributing to
technology accessibility for people with vision and hearing impairments. FASiL,Flex-
ible and Adaptive Spoken and Multimodal Interfaces, developed the VPA as a mobile
PIM application.Languages supported are Portuguese, Swedish and English.

What distinguishes this application from a commonplace PDA, which already
offers PIM? The main difference is the voice- and GUI-driven interaction model. The
interface combines natural language input and output with a touch-screen. The interface
is meant to adapt not only to the usage situation, but also to the needs of the user. This
implies supporting deaf and hard-of-hearing users as well as users with slight or severe
vision impairments.

The main research achievements of the FASiL project lie in improvements to
speech understanding and multimodal output generation, and in the production of an-
notated spoken language and multimodal corpora in the three languages.

The UI on the Fly system realizes an output generation module for the FASiL
VPA. While it could produce output for different modes, it was developed along the
requirements of the VPA application. This mainly influenced the choice of modes (voice,
screen), and dictated the domain of the prototype grammar. Elements of this grammar
will be used in the discussion of the underlying principles in the remained of this thesis.

In the following section, I will describe where the generation component techni-
cally fits into a multimodal dialogue system like the VPA.

16



2 System Overview

2.2 Process flow in a dialogue system with multimodal
generation

To discuss the interplay of various components, I turn to a simple example, which repre-
sents a short multimodal interaction between the system and its user. Let’s step through
part of this dialogue.

HTML Browser / Screen

Text-To-
Speech

Audio: Microphone 
and Speaker

Signal Fusion UI on the Fly: 
Generation

Dialogue 
Manager

Speech 
Recognizer

Application

Domain 
Knowledge 

Base

mode-specific 
realization and 

rendering

multimodality 
services

dialogue- 
level

mobile 
client 
(PDA)

server-
based

Figure 2.1:Information flow in a pipeline-based dialogue system with UI on the Fly.

User input: “Search my e-mail”
The user’s speech input is recorded and processed by the first stage: an automatic

speech recognition module (ASR). Usually, this module is specially tailored for the par-
ticular domain through language models. Systems differ in the way further processing is
done. Some may replace pronouns and other references with descriptions of the entities

17



2 System Overview

they refer to.1 I call the module performing the transformation from an audio record-
ing of speech to a meaning representation amode-specific recognizer. Either way, a
machine-readable, structured representation of the natural language input is produced.
For example, [

command: start-search-interaction

database: e-mails

]

may describe the user input. This representation will differ in detail, however, it will be
compatible input for the next stage, the dialogue manager.

The dialogue manager decides aboutwhat to do next. This component knows
what was said before, and it knows which pieces of information need to be obtained
from the user in order to execute the higher-level goal (e.g. searching for an e-mail). For
instance, to search for an e-mail, we need to ask for a keyword. Such information is usu-
ally retrieved from aknowledge base, which encodes general, but domain-specific data,
independent of the user. Another example of typical information found in a knowledge
base would be that an e-mail consists of one or more recipients, a subject line, a body
(text) and, optionally, some attached documents.

Usually, the dialogue manager will ask for all necessary information and then
query the attachedapplication to execute the task that the user has instructed it to do.
An example for an application would be a database of documents (e-mails, for example)
or a program that sends e-mail.

The dialogue manager will also react appropriately to faulty or misunderstood
input, for example by restating the question it has asked before, in a slightly different
way, or offering other help.

It should be noted that such a dialogue manager can be implemented with com-
plete ignorance of the underlying tasks, application and the interaction modes and lan-
guage (as in French, Chinese) that the human user employs. Therefore, the dialogue
manager produces a language- and mode-independent representation ofwhat to say, and
also of the particular context. This context contains high-level goals that the user may
have (thetaskof searching for something) and the intermediate action the system wants
to perform (filling in a particular piece of information for the task). It also specifies the
information already obtained about the task. I call the meaning (semantic) representation
coming from a dialogue manager adialogue act.

In our example, the dialogue management output could be a structured represen-
tation ofAsk the user for a keyword, we are in the process of searching for something,
and the database we use is the e-mail database. The next module deals with the question
of how to say it. This is wheregenerationjoins the game.

Generationdecides about the particular modes to be used (multimodal fission) and
formulates a linguistic and graphical representation of the dialogue act. It takes into ac-

1For example,Is it a new one?may be replaced by a representation forIs document number 672 a new
e-mail?

18



2 System Overview

count the specifics of the language used, of the usage situation and the user’s preferences.
By usage situation, I mean the external context that that the user is in while operating the
device. He or she may be in a busy restaurant, riding public transport, driving a car or
simply be on his or her own at the workplace. The usage situation is detected with means
external to the generation module. Various sensors such as microphones and a built-in
camera may be used, and their result classified using a trained model. The details of
situation detection will not be subject of further discussion.

The output of the generation module is a series of mode-specific, language-specific
and situation-adapted representations, almost ready to be presented to the user. This
could be a text with some prosody annotations, or HTML (Hyper-Text Markup Lan-
guage) code to describe the visual display. In our example, this could be text for a short
voice prompt: “Keyword?”, and more elaborate text display, such as “Enter a keyword”,
alongside a field to allow for text entry, and a “Search” button.

The final step is again specific to the mode. Natural language, if supposed to
be spoken, is processed with a text-to-speech (TTS) engine and output via speakers or
headphones. Interactive graphics are usually displayed through a GUI manager (e.g. an
HTML browser), which usually handles the immediate forms of interaction (for example
visual feedback).

Now that the user has been presented with a question, he will make some input.
For example, he will speak “Mary – and – birthday”, then hit the “search” button on the
screen.

This is where we enter the speech recognition (ASR) phase again. This time,
however, we have additional input on the touch-screen. It needs to be analyzed as well by
a mode-specific recognizer, and then combined with the speech input. This is handled by
a process calledsignal fusion. The outcome of fusion is a mode-independent, language-
independent representation.

Communication between the system’s components is often handled with a black-
board (or multi-blackboard) architecture (as used in research systems such as VERBMO-
BIL (Wahlster, 2000) or SmartKom (Wahlster, 2003)), or with unidirectional pipelines.
Figure 2.1 gives a broad account of how a dialogue system interacts with MUG.

2.3 Requirements for the generation task

Several requirements for the generation module can be identified.

The module generates output for single dialogue turns. There is no persis-
tent dialogue-related information kept in the generation module. All information needed
is given in the interface representation.

A central dialogue manager is in charge to determine which dialogue act should
be rendered. This component is expected to be present in the dialogue system and is not
described in this thesis. The generation module, however, will take individual decisions

19



2 System Overview

about the details of what is output, if the original request cannot be fully honored, or
if the original request is not fully specific. So, the interface between dialogue manager
and generation has to supportshared responsibility. I discuss the consequences of this
in Chapter 3.

Adaptivity extends to the details of what is included in the system’s output. The
generator may choose to skip certain elements on the basis of external (situation-specific)
factors. Adaptivity also influences the decision about which modes are used, and to
what extent output is made in these modes. My approach to adaptivity is documented in
Chapter 4.

System-directed and mixed-initiative systems are the prime targets for dia-
logue systems. A generation approach like the one described in this thesis can be used
in a computational environments similar to the dialogue system described in the previ-
ous section.System-directeddialogue implies that the systems asks questions, the user
replies.Mixed-initiativewill allow for actions to be initiated by the user and by the sys-
tem. Other systems, where the interaction is not directed at all would need to always
offer a variety of interaction options to the user, in particular with menus on a screen,
and adaptation would have to focus on different aspects. I do not address these latter
systems.

Generation is a time-critical process, because it is one of the system components
that can block the flow of user interaction. Work needs to be invested in coming up with
an efficient process. I describe our methods and results in this area in Chapter 6.

Coherence is the property of dialogue (or discourse, in general) that renders it fluent.
Good style in the natural language utterances and of the whole interface is vital to a
positive user experience. I will address it in chapter 5.2.

Output in multiple languages will be generated. Linguistic information should
be kept separate from algorithmic implementations. The grammar-based system de-
scribed in Chapter 3 is language independent.

Interfaces are not developed by computational linguists. The requirement
for multimodality carries a hidden consequence. Someone will need to specify the in-
terfaces, and this person will not be the developer of the generation system. While large
linguistically motivated generation systems depend on linguists for their grammars, my
system provides tools that support designers and programmers. While the system pre-
sented here is far away from a graphical-based design tool, nonetheless the MUG Work-
bench, described in Chapter 7, is a step in this direction.

20



2 System Overview

2.4 “UI on the Fly”

The generation system presented here is calledUI on the Fly. As the name suggests, user
interface (UI) is generated in real-time. This is a departure from common user interface
design, where a designer decides about the details of the interaction. Because UI on the
Fly is a dynamic generation system, many design choices are delegated to the system,
which makes its decisions based on a variety of factors.

2.4.1 The generation process

Figure 2.2 explains where and how design choices are made in the system. The mode-
and language-independent dialogue act representation introduced earlier is the starting
point. First, an algorithm generates potential outputs. It does so with agrammar, which
is a collection of small design specifications. The grammar sometimes offers many
alternatives for a particular part of the output, which is why the output generation step
can combine all the alternatives to many different variants of the final output. I call the
grammar systemMultimodal Functional Unification Grammar.2

Throughout this thesis, I will call these potential outputsvariants– after all, they
are variations of the same basic dialogue move given to the generation system.

The next step chooses one variant out of many: the one that is deemed the most
appropriate one for the given usage situation and the used device. I call this stepranking.
It is controlled by afitness function, which encodes the goals that we would like to
achieve. They are explained in detail in Chapter 4.

The best variant is a linguistic and visual representation of the output, which is
processed and displayed by mode-specific renderers.

The devision between output generation and ranking, often calledgenerate &
test, is more a rhetorical move in this thesis rather than an implementation reality. As
described in chapter 6, output generation and ranking are intertwined.

UI on the Fly has been instantiated for the PIM domain, with a focus on sending
e-mails. Figure 2.3 shows some examples of generated output. Output a) is consid-
ered appropriate in the general situation, where both modes are available for interaction.
Output b) is chosen for a case in which the user is driving a car, because we need to
rely on the voice mode rather than screen output. Output c) shows a different dialogue
turn, meant to disambiguate between two contacts with the same first name. The variant
shown is generated for a cell phone, which explains the short screen output.

2The impatient reader may jump to Chapter 3 for a detailed justification as to why this grammar has such
a highly scientific name

21



2 System Overview

Hard constraints:
Multimodal 
Functional 
Unification 
Grammar

Output 
generation

Ranking

many 
components

many 
output 

variants

Device 
model

Dialogue Act

Soft constraints:
Fitness function

Situation 
model

to screen 
browser

to text-to-
speech 
system

Mode-specific 
markup: 
screen

Mode-specific 
markup: text

rank and 
pick the 

best variant

from 
dialogue 
manager

mode-
specific 

renderers

Figure 2.2:Simplified analysis of the generation process. First, multiple variants of the
multimodal output are generated. Then, they are ranked using a fitness func-
tion. The best-scoring variants is then rendered.

22



2 System Overview

(a) (b) (c)

Figure 2.3:Different situation- and device-adapted outputs, resulting from different dia-
logue acts. a) Voice: “Send the email?” (The screen output ’to the contact’
assumes the context of previous dialogue, talking about the recipient as a
contact.) b) Voice: “Send the e-mail to Mick, yes or no?” c) Voice: “Who
would you like to send the e-mail to? Jenna Templeton or Jenna Elfman?”

23



2 System Overview

2.4.2 Positioning UI on the Fly in Natural Language Generation

Reiter’s “consensus” architecture (Reiter, 1994) divides Natural Language Gen-
eration into three tasks:

• Text planning and content determination.The content of a message is chosen and
organized into single propositions, which are usually realized in a tree structure
reflecting the rhetorical units of the discourse.

• Sentence Planning,consisting ofaggregation,where propositions are structured
into clausal units, andlexicalization,where concepts in the knowledge base are
translated into words or phrases according to a lexicon. The latter significantly
influences syntactic structure, including constituent order.

• Linguistic realization:Morphological features are enforced, typographical sche-
mata are realized. The final markup is generated.

Just like outlined in Section 2.4.1, the complete flow in generation assumes some
form of database and a general communicative goal to start with, for example, a database
with weather forecasts and the goal:formulate a one-week forecast for Boston!.

A common problem of natural language generation systems is that a pipeline be-
tween modules does not allow the system to revise choices taken in an early module,
when the processing done by a later module shows that the output would be inappro-
priate. An example of this is the length of the final output. Reiter (2000) shows that
pipelines with multiple outputs help, but that a revision-based architecture (i.e. without
unidirectional pipelines) is superior. For this reason, UI on the Fly partially abandons
the three-part approach used in many classical generation systems and outlined by Re-
iter. While I only implement some of the decision-making processes, it is clear that
interdependencies between the modules suggest that their respective knowledge should
influence each other’s choices.

UI on the Fly addresses some of the aforementioned steps in a unified way:Text
planning and content determinationis mainly left to the dialogue management (DM)
component, while UI on the Fly reserves the right to modify some of these decisions
in case there are strong reasons to do so. My system handlessentence planning(for a
single dialogue turn), even though there isn’t much to do in the Virtual Personal Assistant
domain. Linguistic realizationis implemented fully by UI on the Fly, along with the
realization of non-verbal elements, such as user interface widgets on the screen. The
decision-making process that takes place in sentence planning and linguistic realization
is calledmicro-planning.

2.4.3 Requirements for the Dialogue Manager

The generation approach in UI on the Fly is not suitable for all kinds of dialogue man-
agers. An adaptive system like UI on the Fly needs information aboutwhat to sayto

24



2 System Overview

base its decisions on. Most of the data needed is fairly obvious, however. Facts about
the current task are always present in the dialogue management component. Suppose a
household management system is to backorder food that is missing from a user’s refrig-
erator, the system will have a list of produce available when it asks for confirmation of
the order. Or, if we are sending an e-mail message, the system will have information
such as the recipients’ e-mail addresses available in a structured form.

However, dialogue information is not necessarily structured: this mainly depends
on the method of dialogue management. Current commercial and many dated research
systems manage dialogue using finite states, for example in dialogue platforms such as
the CSLU Toolkit (McTear, 1998). The state encodes information about the dialogue
progress, which provides a simple, yet effective model. Usually, different states are used
for short and longer prompts in a particular situations. There is typically a high number
of states present. Models are easy to maintain without much linguistic or user interface
know-how. However, any structured information is lost in the states. Such a dialogue
system is difficult to attach to any natural language generation component, including the
one developed in this thesis.

UI on the Fly expects the dialogue manager to have structured information avail-
able, such as a broad description of the task (e.g. “sending an e-mail”), a more fine-
grained state giving the type of data we are manipulating (e.g. “adding an item to a list
such as the recipients list of an e-mail”, cf. Denecke (2000)). The dialogue manager
needs to be aware of which facts about the current task have yet to be confirmed.

Such dialogue managers encode a dialoguestrategyrather than a complete model
of dialogues to expect (Denecke & Waibel, 1997; Papineni et al., 1990). Therefore,
compared to state-based systems, their domains can be more easily extended and they
can flexibly react to unforeseen situations.

2.5 Summary: Contributions of this thesis

This thesis makes contributions to three fields.

• Multimodal Human-Computer Interaction: I present a motivation and a combina-
tion of formalism and associated algorithm to address novel questions ofcross-
modal coherence. I present a reusable, grammar-based method to dynamically
produce a multimodal user interface specification, adapting to a user’s situation
and device constraints. To my knowledge, this is the only system that addresses
cross-modal coherence, adaptivity and reusability.

• Natural Language Generation: I present a hybrid grammar formalism which can
combine pre-fabricated phrases and linguistically motivated grammar fragments.
The generation system combines a grammar with soft constraints, which attempt
to predict the effort a human interloctur undergoes in processing potential output,
and balance it off against the benefit that the user might have in understanding
the content conveyed. I introduce novel methods and a ready-to-use implemen-

25



2 System Overview

tation to inspect, maintain and extend functional unification grammars. I discuss
methods to optimize the search for an appropriate system output.

• Discourse Coherence: I present and discuss a unification-based implementation
of a theory of local coherence, which can aid in the generation of such output that
fits into its communicative context, i.e. is coherent.

26



3 Hard Constraints in Multimodal
Functional Unification Grammar

Hard constraints:
Multimodal 
Functional 
Unification 
Grammar

Output 
generation

many 
components

many 
output 

variants

Dialogue Act

Domain 
Knowledge Base

Figure 3.1:The realization process covered in this chapter.

UI on the Fly uses a central component to generate output: Multimodal Functional
Unification Grammar (MUG). This is a grammar formalism that encodes the variety of
possible outputs in an efficient, reusable way.

In this section, I will explain how MUG allows us to generate content. The task of
the grammar is to encode hard constraints, which control the microplanning for a single
dialogue act and the realization of content. In the Virtual Personal Assistant (VPA)
application, the grammar is used to ensure coherence, make syntactic choices, generate
referring expressions and select intra-sentential content. The grammar directly specifies
how to realize the final mode-specific markup.

The key ingredients to generation are agrammar formalism(MUG) and an asso-
ciatedgrammar application algorithm. The grammar formalism is used to encode the
various possibilities to realize output in a multimodal user interface. The application
algorithm tells us how to use the grammar to realize content. Both are language- and
mode-independent. The formalism is based on Michael Elhadad’sFunctional Unifica-
tion Formalism(FUF) (Elhadad & Robin, 1992). I will point out significant differences
(and perhaps: improvements) as I explain how it works.

Grammar and application algorithm produce different alternative variants of the
output. While all of them are designed to get their message across to the user, they differ
in how suitable they are in the particular usage context. This is a gradual difference,

27



3 Hard Constraints in Multimodal Functional Unification Grammar

resulting fromsoft constraintsspecified in afitness functionused to score and rank each
variant. This step will be dealt with later on in this thesis.

This chapter deals with the hard constraints in my generation approach. I intro-
duce the grammar formalism and a general version of its associated generation algo-
rithm. I present the VPA application as a an example of how the grammar can be put to
use, and give examples of actual cross-modal coherence. I finish with a description of
the syntax of grammar implementations.1

3.1 Tree structures in linguistic and visual interfaces

Anyone who has ever dealt with the linguistic analysis of sentences will know that tree
structures have dominated large portions of linguistic theory. Figures 3.22 and 3.3 ex-
emplify hierarchical structures on different levels.

The general idea is always the same: smaller parts of text combine, and the result-
ing larger text span assumes a role in the combination with other text spans. (Branches
of such a tree structure are usually calledconstituents. The notion of a constituent will
be further refined and applied to the context of MUG.)

Interestingly, this basic principle can be found in other representations of informa-
tion as well. Graphical user interfaces often enforce a hierarchy of objects, as Figure 3.4
demonstrates. Larger constituents consist of smaller ones, and they are visually grouped.
It is not surprising that the process of rendering an HTML (World Wide Web) page typ-
ically involves a tree-like specification and an even more elaborate rendering tree. The
Document Object Model (DOM) is a widespread system to encode arbitraty documents.
It uses tree structures.

IP

NPi

Roses

I′

I0

are

VP

ti V′

V0

going

PP

out of style

\Tree
[.IP [ Roses ].NP_i [.I\1 [ are ].I\0

[.VP t_i [ [ going ].V\0 \qroof{out of style}.PP ].V\1 ].VP
].I\1 ]

Granted, by the time the examples get this big, the bracketed format isn’t
all that readable, but it’s certainly no worse than any other tree format, and
you can add white space to make it a little better.

4 Tree placement

Numbered examples etc. A tree generated with qtree can be placed
in a numbered example environment, in \parboxes, inside math formulas,
tables, pictures, etc. The tree nodes can also contain arbitrarily complex
material—although, unfortunately, it is not possible to embed a recursive
call to qtree.

For hard-to-explain reasons, trees often appear farther to the right than
is visually appealing; but not to worry, you can move them sideways by
hand. (Note the \hskip in the next example, which moves the tree 0.5
inches to the left).

Side by side trees Multiple trees, or text and trees, can be arranged
side by side. This can generally be done by just arranging commands one
after another; it usually helps to turn off tree centering. If necessary the
positioning can be adjusted with \hskip.

5

Figure 3.2:Syntax tree

1For a more compact account, see Reitter et al. (2004).
2This example and GB analysis is taken from Siskind/Dimitriadis, Documentation for qtree.

28



3 Hard Constraints in Multimodal Functional Unification Grammar

4. URML: An Underspecified Representation of Rhetorical Analyses

Sequence

!

Elaboration

7A
Sequence

"
Concession

7B 7C

7D

Contrast

"
Cause

7E 7F

7G

7H

[Yesterday, the delegates chose their new representative.]7A [Even though Smith received only
24 votes,]7B [he accepted the election with a short speech.]7C [Then the assembly applauded
for three minutes.]7D [Due to the upcoming caucus meeting,]7E [the subsequent discussion was
very short.]7F [ Nonetheless the most pressing questions could be resolved.]7G [The meeting was
closed at 7pm.]7H

Figure 4.1.: A text analysis within Rhetorical Structure Theory. It is one of the interpre-
tations that can be derived from the underspecified URML representation in
Section 4.3.8.

as in sequence with only 7C, and 7B is a concession to span [7C,7D]. Automated analysis
tools might only give a partial answer here. Also, they might not be able to infer the
Elaboration relation between 7A and the subsequent segments. In particular, automatic
analysis will often encounter problems to locate the precise boundaries of larger segments:
Where does the just-mentioned Elaboration end? Also, nonetheless at the beginning of
7G signals a Contrast or Concession, but based solely on surface cues, it is by no means
clear how far to the left the first span stretches, i.e., what the exact scope of the nonetheless
is.

We face two different kinds of ambiguities. Depending on the rhetorical bias of those
annotating a corpus, they may decide that a single primary discourse intention cannot be
established (cf. section 2.5.1). The other type of ambiguity may arise in a step-by-step
annotation architecture, where certain decisions about a relation simply have not been
taken yet.

Uncertainties related to the kind of relation can be represented by simply leaving out
relation information — see Section 4.3.8. For instance, if the specific relation between two
spans is unknown, the relation tag can omit the type attribute (node12). If, however, the
class of a relation (hypotactic or paratactic) is known, a hypRelation or parRelation tag
should be used. If a span is known to be an argument of a relation, but its role is unknown,
it should be labeled element instead of satellite or nucleus (nodes 1E, 1F).

Each relation statement refers to its direct descendants in the tree via the identifier of

24

Figure 3.3:Rhetorical structure according to Rhetorical Structure Theory (Mann &
Thompson, 1988), as analyzed in Reitter (2003a).

UI on the Fly uses tree structures to generate content, which is not at all remark-
able. What is novel, however, is that there are no separate trees for the output in different
modes. Instead, they are integrated. The output in the modes is structurally coordinated.

To describe which trees can be built up, UI on the Fly uses agrammaras men-
tioned before. The following sections introduce the grammar formalism.

3.2 Introduction to MUG

3.2.1 How grammars are used in generation

There are many forms of grammars in linguistics. Computer science, however, has a
specific notion of a grammar. Grammars allow us to compose text that is made up of
phrases. These parts of text, in turn, consist of smaller (lower-level) phrases, and so on,
down to the word level (and further!). Such structures are found in languages, be it a
programming language (as inC++ , Java), or in a natural language (as inFrench).

Grammars contain rules, each of whichlicensesthe realization of a part of the
input structure. The grammar rule usuallyrequeststhe application of further, lower-
level, rules.3

3Compare this to the rules of aproduction grammar, which can look like this:A ⇒ BC. What this
means, is that an elementA is composed of elementsB andC.

29



3 Hard Constraints in Multimodal Functional Unification Grammar

Figure 3.4:Parts of the tree structure in a contemporary graphical user interface. Some
constituents are marked.

While it is beyond the scope of this thesis to introduce the general concept of
grammars, two features of Multimodal Functional Unification Grammar (MUG) need to
be emphasized, which distinguish it from grammars known in computer science:

MUG is a generation grammar. While grammars are usually used toanalyzethe
structure of text, we use them toproducetext.

MUG uses attribute-value matrices. Instead of atomic symbols such asA, B, C,
which display no internal structure, we use richer categories. The data structure used to
encode a category is anattribute value matrix(AVM). The structure shown in the next
subsection is a first, simple example of an AVM. The following sections give an overview
of AVMs. Because MUG does not use production rules, the notion of acomponenttakes
their place. A component is an AVM plus some additional information.4 Unification is
a function of two AVMs, which merges their information. AVMs and unification have
been widely used throughout computational linguistics as a means to encode syntactic
theories (most prominently, head-driven phrase structure grammar) and implement real-
ization grammars (such as SURGE, Elhadad & Robin (1998)), as well as in multimodal
applications, such as for signal fusion (Johnston, 1998). They have been discussed and
examined at length. For a detailed discussion, see Carpenter (1992).

The nested attribute-value structures and unification are powerful principles that
allow us to cover a broad range of planning tasks, including syntactic and lexical choices.

4In the following, the termcomponentrefers to its AVM wherever appropriate.

30



3 Hard Constraints in Multimodal Functional Unification Grammar

The declarative nature of the grammar allows us to easily add new ways to express a
given semantic entity.

MUG does not use production rules. Usually, grammars encode a single rule or
production, for example the context-free ruleA ⇒ BC. What this means, is that any
element of categoryA can be composed of elements of categoryB andC, or seen from a
different angle,A producesB andC. Two or more components on the right hand side of
the ruleproducethe one on the left hand side. In MUG, the same rule would be encoded
in a different way:

cat: A

first:
[
cat: B

]
second:

[
cat: C

]


In MUG, a rule encoded like this (plus some additional information) is called
a component. The grammar consists of several components.5

Linear precedence is formulated explicitly in MUG. The traditional produc-
tion rule given before implies that all elements expanded from B precede the elements
expanded from C in the surface form of the described word (input or output). In MUG,
the outputs resulting from B and C are explicitly concatenated:

cat: A

text: concat(T1 , T2 )

first:

[
cat: B

text: T1

]

second:

[
cat: C

text: T2

]


3.2.2 A restrictive blackboard architecture

There are two mainstream architectures for systems that plan and realize natural dia-
logue. Thepipelinemodel assumes a serial ordering of jobs, each carried out by a dif-
ferent module: for instance, text planning and content selection, then sentence planning,
then linguistic realization. There are idiosyncratic interface representations between the
modules, and while a single module may output more than one solution (usually as an n-
best list), there is usually no backtracking across module boundaries. Target constraints
can only be optimized in a single module. Theblackboardarchitecture uses a central

5Note that the use ofcat attributes here (cat stands forcategory) is simplified for illustrational purposes.

31



3 Hard Constraints in Multimodal Functional Unification Grammar

data exchange repository for all modules, which operate in parallel. This way, modules
may add or revise information step by step (Galaxy Hub: Seneff et al. (1998), Verb-
mobil: Wahlster (2000)6). Synchronization problems and efficiency considerations are
issues using the blackboard architecture.

Functional Unification Grammars make use of a restrictive blackboard architec-
ture. That means that a single logic data structure as a central data repository is used.
I call this data structurethe blackboard. It is augmented during the generation process;
information is monotonically added until a variant is generated (Figure 3.5). After the
generation of one variant is finished, steps are undone on the blackboard, and different
components from the grammar are chosen to generate another variant.

Even though we deal with a central blackboard that the grammar components can
modify, the single components take only local scope: the constraints that the components
state may only access the information space within a particular portion (a substructure)
of the blackboard. Therefore, the grammar iscompositionalin Frege’s sense (Frege,
1892).

Substructuresare part of the large piece of information stored on on the black-
board. A substructure that is to be or has been extended further with a grammar
component is called aconstituent. The application operation, which combines the copy
of a component together with a constituent is calledunification. It adds information to
the constituent on the blackboard. Unification, constituents and components will be
defined more formally subsequently (see Section 3.2.5).

3.2.3 What grammars specify

The grammar encodes partial user interface elements, groups of such elements or natural
language phrases ascomponents. A component specifies a set of constraints which define
the cases in which it would apply, and also which daughter components are called. For
example, a component could apply to all cases where we are giving out some pieces of
information to the user. It could call further daughter components to realize the subject
(e.g.The email from Tony) and the predicate of a sentence (e.g.has been deleted). It can
state that the two text strings are concatenated as the result of the operation.

In contrast to a production grammar with rules such asS′ → NPSubj V P , MUG
uses only a single attribute-value matrix for each component to encode constraints and
results of the operation. (See Sections 3.2.4, 3.2.6).

The components define constraints operating on the information represented in
structures they combine with. The combination process is calledunification. It ensures,
that all constraints defined in the component are fulfilled, when it is applied to a con-
stituent structure. More details about unification are given in the next section. However,
it is useful to note that higher-level components encode the relationship between the in-
formation in the input and the lower-level components. Therefore, we can speak of a tree
structure not unlike the one resulting from a production grammar. The constraints given

6SmartKom, (Wahlster, 2002), and COMIC (Moore et al., 2004) use the Verbmobil hub.

32



3 Hard Constraints in Multimodal Functional Unification Grammar

component 2

component 3 
voice

component 25

component 1

...

component 3 
screen

Figure 3.5:Schematic diagram showing that components (on the right) unify destruc-
tively with constituents on the blackboard (left). Where multiple compo-
nents are unified with the same constituent, they realize output for the same
meaning (described by the constituent) in different modes.

in the components allow grammar writers to place detailed restrictions on the cases when
a component can be used to realize a portion of the original semantic input structure.

As in many grammars, there can be several competing components that can real-
ize a portion of the input. This ambiguity leads to variety of realization options for the
complete input. The logic of declaratively stated constraints in unification grammars has
a valuable advantage. A declarative grammar separates the planning algorithm, formu-
lated as set of soft and hard constraints, from the grammar application algorithm, which
is a constraint satisfaction and optimization problem. In other words, the grammar does
not depend on a specific order of execution. It only expects that the specified constraints
are fulfilled.

In the following, I will motivate the use of AVMs, describe the application domain
of my examples, describe grammars and the formalism used to encode grammars before
detailing grammars further.

33



3 Hard Constraints in Multimodal Functional Unification Grammar

3.2.4 Attribute-value matrices in MUG

We have seen that components encode constraints about which other components they
combine with. To specify these constraints, MUG leverages the computational and
model-theoretical advantages ofunification grammars. These are based on data-structures
calledattribute-value matrices(AVM, or: feature structures), which encode and struc-
ture information, and an operation,unification, which merges AVMs, if they areunifi-
able.

AVMs represent a generic class of data structures, which are useful to represent
constraints in a declarative formalism. From input to planning and realization, to the final
output structure, the grammar uses AVMs, which makes it easier to understand. Because
of AVMs, components are more reusable. Another advantage of the unification-based
framework is that it forces us to clearly specify the scope of information. Local infor-
mation allows for compositional construction. The declarative nature of the grammar
allows us to easily add new ways to express a given semantic entity. The information
that each component has access to is explicitly encapsulated by an AVM. The nested
attribute-value structures and unification are powerful principles that allow us to cover a
broad range of planning tasks, including syntactic and lexical choices.

The downside of unification grammars is that it is difficult to encode procedurally
formulated constraints, for example constraints that search the best of several substruc-
tures according to a certain criterion. Syntactic theories such as HPSG suggest that such
constraints don’t regularly exist. Leaving the world of syntax, however, we find that
theories of discourse coherence (as discussed later in this thesis), demand a ranking of
AVM substructures that cannot be provided with plain unification.

I will defer the problems of particular applications until later and define AVMs
in more detail at this point. An AVM describes linguistic data by means of a structure
listing pieces of information. Each piece of information is characterized by an attribute
and a value. Formally, we define an AVM as a set of attribute-value pairs, where each
attribute is an atomic symbol and unique in the set. Each value can be atomic, a numeric
value, a string, a list of values or an AVM. So:

AVM (A)& < a, v >,< a, v′ >∈ A→ v = v′

If the AVM is typed, only attributes declared in its type may be present in the set. Their
values must be subsumed by the type that was declared for the given attribute. A simple
example demonstrates this:

type: person

firstname: ‘Tony’

lastname: ‘Hawk’

age: 34


Suppose we define a type namedperson, as shown in Figure 3.6. This type declares five

34



3 Hard Constraints in Multimodal Functional Unification Grammar

attributes for the type:firstname , lastname , age , birthplace andlocation .
The values associated with the two names are of typestring, the one associated withage
is aninteger, and the two places are of typeplace.

PERSON 
firstname: string 
lastname: string
age: integer
birthplace: place
location: place

PLACE 
county: string
town: string

THING 

Figure 3.6:A simple type hierarchy with three typesperson, locationandthing.

Recursion: Values used in AVMs may be more complex than shown in the previous
example. Very often, they are AVMs themselves, in which case they are calledsubstruc-
tures. Typical structures become relatively large. A small example for an AVM with a
substructure in the thelocation attribute is

type: person

firstname: ‘Tony’

lastname: ‘Hawk’

age: 34

location:
[
zip: 92075

]


AVMs are recursive. In order to identify a specific value within the AVM, anattribute
path (or short: path) can be used. It gives a sequence of attributes, which uniquely
identifies a position in such a nested AVM. For example,location|zip identifies
the attribute whose value is 92075.7

Substructures are used to separate data. This is an advantage, as grammar com-
ponents typically only deal with one substructure at a time, independently of each other.
Where dependencies are wanted, data is explicitly shared across the structure withvari-
ables.

7In Chapter 5.2, the denotation val(location|zip ) is used to refer directly to the value in formulas.

35



3 Hard Constraints in Multimodal Functional Unification Grammar

Up to now, AVMs bear a remarkable ressemblance with objects used in object-
oriented formalisms. The difference to a, say,Javaobject lies inunder-specification, in
structure sharingand in an operation calledunification. They will be explained in the
following.

Structure sharing: Values used in AVMs may be shared. This means that they
carry the same value, if they are eventually assigned one. If the value is not atomic, this
sharing relationship persists. Variables, denoted inboxes, indicate structure sharing.
For example, we can represent all people who live in the same town they were born in
like this:

type: person

birthplace:
[
town: 1

]
location:

[
town: 1

]


By using variable binding in grammar rules, grammar writers can specify equality of
any set of values that occur in an AVM or in any of its substructures. If two values
are bound to the same variable, they share their value rather than containing a copy of
each others value. Usually, not just a single atomic symbol is shared, but whole sub-
structures. For this reason, we often speak ofstructure sharing. The notion of structure
sharing is realized in modern programming languages in form ofreferences. Where a
variable is used in the AVM notation, Java would use a reference to an object. This way,
sharing is persistent and efficient.

The formal view of an AVM needs to be augmented to accomodate structure shar-
ing. In addition to the set of attribute-value pairs, an AVM therefore contains a set of
sets of attribute paths. The paths in each set point to substructures in the AVM sharing
information.

Under-specification: Not all attributes declared must be assigned values. Thus, an
AVM represents a set of items. For example, we can describe all 34-year-old people
whose name isTony:type: person

firstname: ‘Tony’

age: 34


If an attribute is missing, we say that is value is notinstantiated. The same expres-

sion applies when an attribute is present, its value however is undefined and only bound
via structure sharing to some other value. In this case, we also say that the variable is
not instantiated.

36



3 Hard Constraints in Multimodal Functional Unification Grammar

Extension: Given an attribute-value matrixA, it can beextendedby either adding an
attribute-value pair toA, by instantiating existing variables to atomic symbols or other
AVMs, or by extending the value in any of its attribute-value pairs.

Unification is a simple operation defined over pairs of AVMs (operator symbol:∪).
It builds on the fact that AVMs can be under-specified. Unification combines the infor-
mation contained in both structures if they are consistent. Otherwise, unification fails.
For example, we can unify the aforementionedTonystructure with one that represents
all people from San Diego:
type: person

firstname: ‘Tony’

age: 34

location:
[
county: ‘San Diego’

]


=
type: person

firstname: ‘Tony’

age: 34

∪
type: person

location:
[
county: ‘San Diego’

]
Note that unification only instantiates some values in the structures. It cannot change
an atomic value, e.g. it could not change the value of theage attribute to35. This is
analogous to other logic formalisms, where variables are either unknown, instantiated or
partially instantiated or constrained in some way.

Formally, the relationunifiableυ(A,B) holds between two attribute-value matri-
cesA andB if there exists another feature structure which extends bothA andB. The
unification of two feature structures,A ∪ B is defined as the minimal attribute value
matrix that extends bothA andB. Unification is commutative:

A ∪B = B ∪A

υ(A,B)↔ υ(B,A)

and it is associative:
(A ∪B) ∪ C = A ∪ (B ∪ C)

υ(υ(A,B), C)↔ υ(A, υ(B,C))

Consistency: In contrast to an object-oriented programming language, the grammar
may only extend existing AVMs. It may not alter values in another way or remove
attribute-value pairs from an AVM. Thus, AVMs monotonically become more specific.

Types: Like other object-oriented formalisms, unification-based grammars need to
trade off the safety of strongly typed classes, where types are enforced, and the ease

37



3 Hard Constraints in Multimodal Functional Unification Grammar

TOP 

ACTION
scope: term
task: task 

ADDTOLIST
contexttype: top
user_intention: top 

FILLFIELD
contexttype: top
user_intention: top 

TASK
contexttype: top
realize: integer
user_intention: top 

ADD_APPOINTMENT 

CALENDARACTION
appointment: appointment 

DELETE_APPOINTMENT 

DETAILS_APPOINTMENT 

MOVE_APPOINTMENT 

PLAY_APPOINTMENT 

EMAILTASK
email: email 

DELETE_EMAIL 

FORWARD_EMAIL
to: contact 

REPLY_EMAIL SEND_EMAIL
args: array(attpath)
  =[man(email/to), opt(email/cc), man(email/body)] 

OPEN_CALENDAR 

SEARCH_APPOINTMENT 

ATOM 

BOOL 

CARDINALITY 

DATE
day: integer
hour: integer
minute: integer
month: integer
second: integer
year: integer
salient: array(atom)
  =[year, month, day] 

DIALOGUEACT
action: action
error: top
experience: top
initiative: top
realize: integer 

ASKCONFIRMATION 

ASKINFO 

ASKTYPE
cardinality: cardinality
type: type 

ERROR 

INFORM 

PICK
cardinality: cardinality
list: array(thing) 

GENDER 

INTEGER 

PERSONNUMBERGENDER 

STRING 

NAME 

TERM 

THING
objectid: string
png: personNumberGender
realize: integer
salient: array(atom)
temporary: bool 

APPOINTMENT
attendees: array(contact)
audiomemo: string
begin: date
end: date
location: string
memo: string
salient: array(atom)
  =[begin, attendees] 

CONTACT
adr: string
centering: thing
firstname: string
gend: gender
lastname: string
salient: array(atom)
  =[lastname, firstname] 

EMAILADDRESS
adr: string
salient: array(atom)
=[adr] 

DOCUMENT
centering: thing
doctype: string
url: string 

EMAIL
attachment: string
bcc: contact
body: text
cc: contact
centering: thing
from: contact
priority: string
subject: text
to: contact
png: personNumberGender
  =[gend:neut]
salient: array(atom)
  =[subject, to] 

PERSON
centering: thing
firstname: string
gend: gender
lastname: string
salient: array(atom)
=[lastname, firstname] 

SMALLDOC 

TELEPHONENUMBER
nr: string
salient: array(atom)
  =[nr] 

TEXT
content: string
filename: file
salient: array(atom)
  =[string] 

TYPE 

Figure 3.7:Knowledge base for the Virtual Personal Assistant

38



3 Hard Constraints in Multimodal Functional Unification Grammar

and prototyping advantages of free types. In common formalisms such as Head-Driven
Phrase Structure Grammar or grammar platforms such as Carpenter’sAttribute Logic
Engine, feature structures are typed. Types are commonly defined in a hierarchical on-
tology, whereas types inherit features from their (subsuming) parent types. Each feature
structure (that inclues every substructure) needs to have a type. Type declarations, how-
ever, put an additional hurdle in the way of developers. The issue is addressed with
a type hierarchy that is used to issue non-fatal warnings in case of possibly ill-formed
substructures in dialogue act input and grammar rules.

MUG usesweakly typedAVMs. It allows for types, but does not enforce them.
That means, a structure may have a type. If it has, the MUG implementation will check
the features used against those declared in the type hierarchy and issue a warning if there
is a mismatch.

The type hierarchy may also be consulted by MUG functions (see Section 3.2.9),
for example to realize a subsuming definite description in a disambiguation situation:
Which of thesecontactswould you like to send the e-mail to?. In the unification based,
late semantic fusion approach implemented for the Virtual Personal Assistant (VPA), the
same ontology is used.

Figure 3.7 depicts the types used in the VPA domain.
The MUG formalism is a syntax to practically specify the grammars. It is de-

scribed in Section 3.4. In the following discussion of how components combine in the
grammar, the unification process plays a dominant role.

3.2.5 Designating constituents in AVMs

The following discussion explains the algorithm that forms the basis of the grammar
formalism. Section 3.2.8 provides a concise account for the algorithm as pseudo-code,
which may or may not be easier to understand than the plain-text description.

Recall that a Multimodal Functional Unification Grammar consists of a set of
components. These components are analogous to the rules of a production grammar,
and what follows here, is a discussion of the idea of declarative grammars, as they are
instantiated in the grammar formalism MUG.

Each of the grammar components specifies a realization variant for a given partial
semantic or syntactic representation. It does so elegantly in a single AVM, which is used
to expand information on the blackboard. Initially, the blackboard contains the input,
a dialogue act. Iteratively, components are drawn from the grammar to be unified with
constituents on the blackboard. This adds information to the blackboard, until nothing
is left to expand and all parts of the input are realized.

To explain which substructures on the blackboard are expanded, we need to de-
fine constituentsformally. A substructure on the blackboard can be designated as a
constituent for a specific modem through an attribute calledcat (for category). I call
such a substructure anm-constituent(or shortconstituent). Values ofm could, for ex-
ample, bescreen or voice , or the attribute could simply be represented as a variable
Mode . The basic template for a constituent is

39



3 Hard Constraints in Multimodal Functional Unification Grammar

(...)

m
[
catcategory

]
To make such a structure a constituent,categorymust assume a value (in uni-

fication terms, we say it must beinstantiated). This value specifies the constituent’s
category. Categories often play a linguistic role: e.g.nominal phraseor sentence. For
MUG as a formalism, however, the value bears no further role beyond the fact that if
the cat attribute is present and associated with some value, the surrounding structure
becomes a constituent.

On the blackboard,m is always instantiated with one of the available modes.
However, the same structure may be ascreen- constituent and avoice- constituent
at the same time, or just either of them. If it is a constituent for both modes, it will have
two mode attributes, as shown here:

(...)

screen
[
catbuttons

]
voice

[
catenumeration

]


Any substructure on the blackboard can be designated (marked) as con-
stituent. This is usually done by grammar components, when they are unified with
larger constituents. Therefore,cat attributes are present in many components. Figure
3.5 illustrates this process schematically. Here, constituents on the blackboard (left) are
marked with a red frame. The largest one is expand with component 1. This component
designates three substructures as smaller constituents. Components 2 and 25 expand
two of them, respectively and each of them is applied twice: once for each mode. These
components work for all modes, and they would have aMode variable in their AVM
instead ofvoice or screen . The third one (in the middle) is expanded by component
2 for thevoicemode and by component 3 for thescreen mode.

Figure 3.9 shows a component to illustrate the designation of constituents in de-
tail. The component itself is of typePICK, so it could be used to expand constituents
of this type, as the next subsection explains. The component designates several sub-
structures asm-constituents. One of these substructures is highlighted in the figure: this
constituent is of categoryDISAMBIGUATE. The other constituent that is designated by
the component in the figure is of categoryUI-CHOOSEONE.

3.2.6 Grammar components are applied recursively to constituents

Now that we have defined what constituents are on the blackboard, we can describe
more closely what happens to them. The short answer is that eachm-constituent is
expanded with the copy of a suitable component. Such a suitable component is one that
unifies with the constituent, and for which all additional constraints (if any) are fulfilled.

40



3 Hard Constraints in Multimodal Functional Unification Grammar

Such constraints may state that the component only applies for a specific modem. If a
component applies to any mode, we use the variableMode as an attribute name. An
simple example of this is given in Figure 3.8, a more complicated one follows in Figure
3.9. 

action 3

 Mode
[
cat 1

]
type 1



instruction


action 3

Mode

[
catconfirm-mod

text 4

]
user-input

 Mode

[
catyesnolist

text 5

]
Mode

[
cataskconfirmation

textconcat([ 4 , 5 ])

]


Figure 3.8:A MUG component that handles the confirmation of tasks or user input. The

mode given in variableMode may bevoiceor screen. Category and Type in
theactionbranch are unified, which means that for each type that may occur
in action, the grammar will provide a lexical form.

After the expansion is completed (i.e. the unification is performed), the result
is written directly to the blackboard, replacing the original constituent. And because
grammar components designate further structures as constituents, there is more to be
expanded – the algorithm is recursive.

With this in mind, one could now give a natural language account the ongoings in
Figure 3.9, the following would be a start:

In any output mode, we can produce output for aPICK situation using the
following ingredients: a) the output for an instruction and b) the output for
some user-interaction field. The resulting texts from a) and b) are simply
concatenated to form the end result. To realize the instruction, we invoke,
for the mode that the whole component is called, a component of category
DISAMBIGUATE, giving it the original quantity (how many elements does
the user select?) and the current action (what is done with the element that
the user picks?). We also give it the type of element, that is supposed to be
picked. (...)

Three AVMs shown in this chapter exemplify some of the steps carried out. The
component in Figure 3.10 is used to expand the highlighted constituent in Figure 3.9,

41



3 Hard Constraints in Multimodal Functional Unification Grammar



action Action

[
user-intention

[
list List

]]
cardinality Card

instruction



type specificCommonType(
〈

List
〉

)

quantity Card

action Action

Mode

[
catdisambiguate

text T1

]



user-interaction



choices

 Mode
[
cat list

]
list List


submit

[
action Action

]
Mode

[
catui-chooseone

text T2

]


Mode

catpick

text concat(
〈

T1 , T2
〉

)




Figure 3.9:Component of categoryPICK illustrating the use of structure sharing and the

notion of a constituent. The marked substructure is one of the constituents. It
will be expanded with component of categoryDISAMBIGUATE, one of which
is shown in Figure 3.10.

resulting in the AVM shown in Figure 3.11. Here, the original dialogue act is ignored
and not contained in the AVMs shown. It could be unified with the large structure at
a later time: the order of unifications does not matter, as unification is an associative
operation.

Each component deals with a separate semantic entity

Constituents on the blackboard often stem from part of the original dialogue act that
was put on the blackboard in the beginning. A different use case might provide a
good example here: A substructure describing a task such asdelete-emailmay be a
screen-constituent. It may contain a further substructure, describing which e-mail is to
be deleted. This substructure may be a constituent, too. In other cases, constituents may

42



3 Hard Constraints in Multimodal Functional Unification Grammar

not stem from the original dialogue act, but be completely produced by components (by
way of unification).

In this example, there may be a grammar component to translate the taskdelete-
email into natural language, for example by saying:remove. This component may, in
turn, instantiate thecat attribute of the email substructure, forcing it to be expanded
by another grammar component. The resultJohn’s e-mailis then concatenated:remove
John’s e-mail.

Figure 3.8 gives an example of another component. This one concatenates a con-
firmation prompt with a a list offeringyesandno choices. TheYESNOLIST is realized
by other components, in order to distinguish between the different modes here. On the
screen, buttons would appear, while the speech output would simply contain the question
Yes or no?, or simply nothing at all, in which case theYESNOLIST component would re-
alize an empty string. The upper component shown in the figure is not concerned with
the choices on the lower level.

So, this declarative grammar can be ambiguous: there may be several competing
components of the same categories in the grammar, which are all unifiable with some
constituent. This ambiguity is needed to generate a variety of outputs from the same
input. Each output will still be faithful to the original input. However, only one variant
will be optimally adapted to the given situation, user, and device (see Chapter 4).

Marking substructures as constituents is the way for components to designate
parts of their own AVM for further expansion through the grammar. This designation
(for a modem) takes place by instantiating the special attribute mentioned earlier,cat ,
which occurs within an AVM that is a value associated with another special attribute
named afterm. In other words, whenever a substructure has an attribute pathm|cat
with an instantiated value, it is a constituent.8 (In an AVM, the variablem is denoted as
Mode . The two writing variations are equivalent.)

Components are grouped incategories, which are used to index them for efficient
retrieval. The value of thecat attribute of a constituent gives the component that the
constituent can be expanded with. In Figure 3.9, a constituent whose category isDIS-
AMBIGUATE is marked. But apart from indexation, component categories do not add to
or restrict the expressiveness of the formalism.

3.2.7 Structure sharing passes information

The structure sharing mentioned before provides an essential mechanism to pass data
between the different components involved in realizing an utterance. As mentioned pre-
viously, variables are denoted as numbers or names, placed in boxes:1 , Mode .9

Already shown in Figure 3.8, structure sharing is also evident in Figure 3.9. This
component has a range of variables, among themT1 , T2 .

8The designation of constituents with thecat feature takes the place of FUF’s (Elhadad & Robin, 1992)
cset attribute, which FUF uses to explicitly give a list of constituents.

9The name of a variable is of no importance to the grammar. In this thesis, numbers are used just to
simplify reading.

43



3 Hard Constraints in Multimodal Functional Unification Grammar



type Type

action



type ActionType

task Task

templatetarget

user-intention
[
list List

]

Mode


cat ActionType

text TargetS

realized 1




quantity Card

Mode


catdisambiguate
text template(“Please choose %w %w to %w!”,〈

Card, Type , TargetS
〉

)

realized 1




Figure 3.10:Component of categoryDISAMBIGUATE. A more complex one, similar to

this, is used in theVirtual Personal Assistantapplication.

T1 is used in attribute pathinstruction| Mode |text and in theconcatfunc-

tion in path Mode |text . It states that the values in positions whereT1 occurs,

must always be the same. This applies toT2 similarly. The functionconcatsimply
concatenates the texts in its list argument. It is described in Section 3.2.9.

Recall that the mode is often replaced by a variableMode to generalize a com-

ponent, which can plan or realize output in all modes. The value of theMode variable
can only be instantiated to one of the modes.

Note that in Figure 3.11, the variableAction is used for structure sharing, while,
in attribute pathinstruction|action , the value of this variable (an AVM) is shown
at the same time. The same happens for the variablesType and T1 . This notational
convention (attribute, variable, value) is known from other unification-based formalisms.

Structure sharing is essential for the grammar. It is used to pass down information
from the higher levels (semantic dialogue act) to lower-level components that generate
parts of possibly mode-specific output. If a grammar rule states that two sub-structures
are shared, this means that they will be persistently shared: they are synchronized. This
means that they are not copied, and sharing does not come with a price tag: there is no
computational (or space-related) expense for shared structures.

44



3 Hard Constraints in Multimodal Functional Unification Grammar



action Action

cardinality Card

instruction



type Type specificCommonType(
〈

List
〉

)

quantity Card

action Action



type ActionType

task Task

templatetarget

user-intention
[
list List

]

Mode


cat ActionType

text TargetS

realized 1





Mode


catdisambiguate

text T1 template( “Please choose %w %w to %w!”,〈
Card, Type , TargetS

〉
)


realized 1



user-interaction



choices

 Mode
[
cat list

]
list List


submit

[
action Action

]
Mode

[
catui-chooseone

text T2

]


Mode

catpick

text concat(
〈

T1 , T2
〉

)




Figure 3.11:When theDISAMBIGUATE component from Figure 3.10 is applied to the

appropriate constituent (marked in Figure 3.9), this structure results. The
structure here has not been unified with the dialogue act input, to illustrate
the variable bindings and shorten the representation. If it were, variables
such asCard and Action would be instantiated. The variables in the text
template are instantiated by further components (not shown here).

45



3 Hard Constraints in Multimodal Functional Unification Grammar

3.2.8 Grammar application algorithm

The dialogue manager is assumed to provide a dialogue act representation as AVM
DialogueAct. The input structure is then framed, so that it is designated as a constituent

of categorymultimodalfor all modes. Here, it is assumed that two modes (screen and
voice) are known to the system (Figure 3.12 shows the general scheme, Figures 3.15 and
3.16 an example before and after the framing.

screen
[
catmultimodal

]
voice

[
catmultimodal

]
tree DialogueAct


Figure 3.12:The frame used to initiate the grammar application process.DialogueAct

is replaced with the input dialogue act.

The input structure is then copied to the blackboard und the grammar application begins.
The central application algorithm ensures two principles:

1. All components that realize a particular constituent (i.e. semantic entity!) must
unify with each other and the entity representation.

2. All m-constituents must be realized, i.e. unified with a component for modem
from the grammar. Components may designate further constituents, thereby call-
ing for more (lower-level) components to be instantiated.

Principle (1) ensures cross-modal coherence via the restrictions put in place by the
components. Components that are cross-modally incoherent should not unify, therefore
their combination cannot be used by the grammar application algorithm. This extends
Elhadad’s uni-modal FUF. (See Chapter 5.2 for a motivation of cross-modal coherence.)

Principle (2) allows the components to cause recursion. As mentioned before,
constituents are designated by an instantiatedcat attribute within the mode-specific
branch of a substructure. This branch is always the one within an attribute that is named
after a mode.

Unification is destructive: it updates the blackboard. Note that there may be
competing grammar components, which creates choice points. The algorithm is non-
deterministic and produces, for example via backtracking, a set of final structures. Uni-
fications are undone if another solution is explored.

Figure 3.13 shows the algorithm that is applied to the blackboard in order to ex-
pand constituents recursively. APPLY essentially identifies all un-expanded constituents
on the blackboard (F ) and calls EXPAND to expand each of them. Expansion can,
through unification, designate further constituents on the blackboard. The previous sec-
tions in this chapter have given a plain text description of what is happening here. The

46



3 Hard Constraints in Multimodal Functional Unification Grammar

APPLY(F ) :

Repeat until no more calls to EXPAND can be made: For each modem ∈M
and for each substructureF ′ in F

if there is an attribute-value pair< m, s >∈ F ′,
if there is an attribute-value pair< cat, c >∈ s (for some categoryc)
and no attribute-value pair< expanded, true>∈ s,

F ′ ← EXPAND(F ′).

EXPAND(X):
Select a componentC from G

for which all constraintsCC are fulfilled and
for whichυ(CF , X) holds (unifiable)

X ← X ∪ CF

X ← X ∪ {< expanded, true>} (and update F)
return X

Figure 3.13:The application algorithm for MUG grammars.

attribute-value pair<expanded, true> has been left out, as it is used only as a bookkeep-
ing mechanism to ensure that the algorithm does not expand anything twice.

By means of structure sharing and instantiation of variables, the grammar provides
a string or a functional expression returning a string for each mode in the pathsm|text,
which can be read out.

APPLY cannot be applied to be plain dialogue act that is given as input. We first
need to mark the whole structure as a constituent for all modes (framing). The con-
stituent category is alwaysMULTIMODAL , i.e. components of this category are needed
in the grammar to serve as an entry point. Such an entry component is given as example
in Section 3.4.

3.2.9 Functional expressions in MUG

After the grammar application, functional expressions are evaluated. A simple example
for such an expression isconcat([’the ’, ’person’]), which evaluates so’the person’.

Functional expressions extend the power of MUG components. They are terms
used as feature values. Expressions are evaluatedafter the grammar has been applied.
The evaluation process itself may trigger further grammar application for some func-
tions.

Why these expressions, if we already have functional components?one might
ask. The reason for their existence is that most of the functions can only be evaluated
once all or some their arguments are instantiated. For MUG components, their order of
application is not guaranteed: it is not generally guaranteed that one component is unified

47



3 Hard Constraints in Multimodal Functional Unification Grammar

with substructures on the blackboard before another one.10 For functional expressions, it
is guaranteed that they are evaluated after the grammar application. Before an expression
is evaluated, all of its arguments are evaluated.

The second important argument for the functions is that their implementation
may specify any algorithm – it would be illusionary to think that a practical genera-
tion/realization grammar can ressort to purely unification-based methods. The string
manipulation functions (capitalization, concatenation and truncation/summarization) as
outlined below are prime examples for this. Consequently, functional expressions are
known in other unification formalisms, withconcatbeing usually present (Pollard &
Sag, 1994). The implementation of the MUG engine allows grammar writers to imple-
ment further functions. These functions are listed in the following.

capitalize(Text) Return a copy of Text with the first letter capitalized.

concat(List) Return a string containing the concatenation of all objects in List. List
may only contain strings.

foreach(List, Template, OutTemplate) A copy of each element from List is uni-
fied with Template. For each of the objects, OutTemplate is instantiated and added to
the return list. Template and OutTemplate are both AVMs, and they should share at least
part of their structures through variables. Foreach applies the grammar application algo-
rithm to its result, so that the templates may designate new constituents. This is used to
realize, for example, a list of referring expressions to contacts all in the same way.

multiply(List, Template) Return a list, which contains a copy of each element from
List, unified with a copy of Template. The grammar is applied to the result.

template(Template, List) Template is a string containing normal text and place-
holders of the form %w. For each placeholder, the next element from List is inserted in
the text. The following example is from theVirtual Personal Assistantgrammar, which
implements theDISAMBIGUATE component and its daughters in a more complex way
than shown in previous figures:11

10The logic of unification grammars implies that each feature path is the equivalent of a constraint. All
constraints hold at the same time for the data that is described by a feature structure. Therefore, there is
no order in which the constraints are checked.

11For a description of the syntax, see Section 3.4

48



3 Hard Constraints in Multimodal Functional Unification Grammar



templatedisambiguate
versionlong
determinerone

action

[
tasksend-email
field to

]
type-npcontact

Mode

[
cattemplate-mod
text template(“Please choose %w %w to %w.”,〈 ‘one’, ‘contact’, ‘send the email to’〉)

]



will be evaluated to:



templatedisambiguate
versionlong
determinerone

action

[
tasksend-email
field to

]
type-npcontact

Mode

[
cattemplate-mod
text “Please choose one contact to send the email to.”

]



Of course, the arguments to the template functions are variables in real-life MUG
components. For example, the following three MUG components show how a string

49



3 Hard Constraints in Multimodal Functional Unification Grammar

can be output in both available modes, or optionally left empty. They copy the common
Stringand a mode-specific prefixP into the template.

component(realize_string, screen, AVM, string_mod_1) :-

AVM === [ string: String,
screen: [

cat: realize_string,
realized: 1,
prefix: P,
text: template(’˜w<P>˜w</P>’,

[P,String])
]

].

component(realize_string, voice, AVM, string_mod_2) :-
AVM === [ string: String,

voice: [
cat: realize_string,
realized: 1,
prefix: P,
text: template(’<PROMPT xml:lang=

"en-GB">˜w ˜w
</PROMPT>’,[P,String])

]
].

component(realize_string, Mode, AVM, string_mod_empty) :-
AVM === [ string: String,

voice: [
cat: realize_string,
realized: 0,
text: ’’

]
].

trim(Text) Return a copy of text with leading spaces removed.

unifyEach(ListOfAVMs, AVM) For each element of ListOfAVMs, make a copy of
AVM and unify the copy with the element. The elements in ListOfFDs will be changed
as a side-effect of this operation, AVM is not affected.

specificCommonType(ListOfAVMs) Returns the most specific type that is com-
mon to all elements of the list ListOfAVMs. The knowledge base (see Figure 3.7) is
queried to derive information about the types. The result, for example, isContact if
ListOfAVMs is a list containing elements of typesContactandEmailaddress.

50



3 Hard Constraints in Multimodal Functional Unification Grammar

summarize(Length, Text) Returns a summary of the Text, approximately Length
characters long. Return Text if the text is shorter than Length. (How the summary is done
is not defined; the current implementation, however, takes words from the beginning and
then end and puts three dots in between.)

3.2.10 Summary

To sum up the steps introduces in this chapter, the general generation process for MUG
grammars is defined as follows:

1. Augment the input representation (Figures 3.14, 3.15 and Section 3.3.1) with de-
fault values and unique object-ids defined in the knowledge base (cf. Appendix
3.7). This step typically adds information that is type-specific – for example,
salience information about typical ways to identify an object of a certain type,
as shown in Figure 3.1512. The object-ids may be used to keep references to a
database (cf. KPML, Matthiessen & Bateman (1991)).

2. encapsulate the dialogue act representation in a feature structure, which calls the
componentMULTIMODAL for each mode.

3. apply the grammar (Section 3.2.8)

4. evaluate functional expressions (Section 3.2.9)

5. for each modem, read mode-specific text (or markup) from feature paths.

3.3 Semantic dialogue act representation in the Virtual
Personal Assistant

3.3.1 Types of dialogue acts in the Virtual Personal Assistant

Although the semantic input is independent of mode (as in screen, voice) and language
(as in English), the input semantics are domain-specific. I will use the VPA system as a
case study of such a representation.

The input identifies a generaldialogue act. For the VPA domain, the following
dialogue acts were used.

• ASKCONFIRMATION: The systems asks to validate or confirm certain data, either
regarding a whole task or just some single slot that is to be filled to achieve the
task. The scope of the confirmation is given in ascopeattribute. For example,
such a dialogue act is represented by the sentenceSend the e-mail now to Michael
Bennett?

12For example, an e-mail is typically referred to by realizing itssubject lineattribute and, secondly, its
sender or recipient.

51



3 Hard Constraints in Multimodal Functional Unification Grammar



typeaskconfirmation
errornone

action



typetask
contexttypeemail

task



typesend-email

email



typeemail

to

typecontact
firstnameMick
lastnameCody


from

[
typeemailaddress
adrreitter@mle.ie

]

subject

typetext
realize1
contentIrish weather


body

[
typetext
contentG’day mates....-Dave

]








Figure 3.14:Input representation: confirmation of sending of an email

• ASKINFO: The system asks for information, such as the recipient of an e-mail
address or a string to be searched for. For example,To whom should the e-mail be
sent?

• PICK: A choice needs to be made from a set, as it occurs in the disambiguation
of input. For example,Do you mean Jenny Cleary or Jenny Langley?

• INFORM: Convey information to the user, such asthe e-mail has been sent.

The input structure, an example of which is shown in 3.14 is compositional. As
opposed to common semantics formalisms, the representation does not employ explicit
quantifiers (such asevery, someor most), as they were not found to be needed in the
personal-information management tasks that were implemented. The input-AVM taken
from theVirtual Personal Assistantand shown in Figure 3.14 specifies the type of act in
progress (askconfirmation), and the details of the interaction type. It then specifies the
details of the current action, in this case, the email that the user is sending.

52



3 Hard Constraints in Multimodal Functional Unification Grammar

3.3.2 Underspecification in the dialogue manager interface

The overall specification of the dialogue act is understood to be mandatory for the gen-
eration component. However, generation may decide to leave out some details of the
dialogue act – possibly, because their realization turns out to be too long to be spoken or
to fit on the screen. Typically, this can have adverse effects on the dialogue: certain in-
formation would never be conveyed. Therefore, a mechanism was put in place to allow
the dialogue manager to direct the sentence planning task of including and excluding
semantic detail.

An attributerealize allows the dialogue manager to indicate the need to realize
a certain portion of the meaning, as shown in Figure 3.14. The generation component
is not obliged to obey this attribute, which is why it is evaluated in conjunction with
a soft constraint. Thisrealize attribute is compared, during scoring, with the actual
mode-specific realization: if a semantic object was not realized even though the dialogue
manager asked for it, the variant score will incur a penalty. Take for example Figure 3.14,
pathaction|task|email|subject|realize , whose value of1 indicates that
the e-mail’s subject lineIrish weathershould be realized in the output. The recipient,
however, does not carry such an attribute: it is underspecified. Therefore, realization is
fully optional and only carries a default benefit.

Fully mandatory realization specifications are not used in the input. However,
grammar components often use arealized attribute to force the realization of cer-
tain lower-level constituents, usually in syntactic contexts that mandate full realization.
This attribute could be instantiated in the input structure as well. Therealized at-
tribute is specific to the mode, so it is always included in the entity in an attribute path
m|realized . The attribute makes the semanticsrecoverable, feeding back to the dia-
logue management component and informing it about the portions of the dialogue that
ended up being realized in the output.

Input to the system may be underspecified, mainly in terms of therealize
attribute, which may be missing completely.13 This should be seen as the default case,
where planning decisions are left to the generation system. However, in many stages
during an interaction, the dialogue manager will see the need to confirm portions of
the task information. In particular, this will be information that was input by the user
in spoken form where the recognition reliability is limited. Such information may be
confirmed “on the fly”, i.e. in a prompt asking for the next input. For example does
Please enter the subject of the e-mail to Tim Morgan!confirm the recipient of the e-
mail elegantly and efficiently. A dialogue system with hard-coded output and dialogue
strategies would have to promptTo Tim Morgan, please say no if this isn’t rightand
wait a few seconds, before moving on thePlease enter the subject line!. The flexible,
underspecified input format eliminates the need for these prompts.

13As a side remark, Langkilde & Knight (1998) go further in their NITROGEN system: even semantic
attributes such asplural may be underspecified, so that the generation system chooses an appropriate
variant. In NITROGEN, appropriateness is defined according to statistical data extracted from a corpus.
In MUG, it is defined according to a fitness function.

53



3 Hard Constraints in Multimodal Functional Unification Grammar



typeaskconfirmation
objectid10
errornone

action



typetask
objectid12
contexttypeemail

task



typesend-email
objectid14
salient<subject, to>

email



typeemail
objectid15

to


typecontact
objectid706
salient< firstname, lastname>

firstnameMick
lastnameCody



from


typeemailaddress
objectid304
salient< adr>

adrreitter@mle.ie



subject


typetext
objectid56
salient< text>

realize1
contentIrish weather



body


typetext
objectid78
salient< content>

contentG’day mates....-Dave










Figure 3.15:Input AVM from Figure 3.14 after augmentation with unique object IDs

and default information from the knowledge base.

54



3 Hard Constraints in Multimodal Functional Unification Grammar



tree



typeaskconfirmation
objectid10
errornone

action



typetask
objectid12
contexttypeemail

task



typesend-email
objectid14
salient<subject, to>

email



typeemail
objectid15

to


typecontact
objectid706
salient< firstname, lastname>

firstnameMick
lastnameCody



from


typeemailaddress
objectid304
salient< adr>

adrreitter@mle.ie



subject


typetext
objectid56
salient< text>

realize1
contentIrish weather



body


typetext
objectid78
salient< content>

contentG’day mates....-Dave










screen

[
catmultimodal

]
voice

[
catmultimodal

]


Figure 3.16:Input AVM as shown in Figure 3.15, but after framing, before it is unified

with threeMULTIMODAL components, one for each mode. The highlighted
portion stems from the input dialogue act. With the framing completed, the
whole structure is marked as a constituent now.

55



3 Hard Constraints in Multimodal Functional Unification Grammar

3.4 The syntax of the MUG formalism

The graphical representation used in this chapter has a computer-readable equivalent.
This section gives a brief account of the syntax used to specify MUG components.

The MUG specification language is close to Prolog syntax. One or more gram-
mar files contain components, which are usually made up of one big AVM (additional
disjunctive or conjunctive unifications are allowed). Variables can be named and always
start with an upper-case letter. The grammar writer is allowed to add detailed comments
about components or their parts. The grammar formalism implements structure shar-
ing within the AVM and other constraints associated with a component by using named
variables.

In the file containing the MUG each component is specified according the follow-
ing syntax:

component(<ComponentCategory>, Mode, AVM, <ComponentName>) :-

Mode=<Mode>, % optional
AVM === <FunctionalDescription>
, <additional constraint>
(...)
.

AVMstands for the AVM of the component. Note that the component must be
finished with a period.<ComponentCategory > is redundant, because it stands for
the value of the mode-specificcat attribute, which is already present in the AVM. It is
noted for indexation and better readability.<Mode> is the mode for which the compo-
nent is written (e.g. screendynamic or voice). The line must be left out if the component
is mode-independent.<ComponentName> represents a unique identifier of the com-
ponent, which is used in debugging grammars. Note that these data do not add to the
expressivity of the grammar, with the exception of the Mode constraint. However, addi-
tional constraints formulated in Prolog may operate on variables. (In practice, negated
constraints and also constraints pertaining to a global device-profile are introduced in
this way.)

In a MUG component, all capitalized words represent variables.Mode for exam-
ple is a variable, which may (and should) be used in the AVM. Variables are also used
for structure sharing (see below).

An example for a valid component specification is:

component(multimodal, Mode, AVM, multimodal_1) :-
AVM === [

tree:[ Mode: [ text: ModeRep ] ],
Mode:[ cat:multimodal, text: ModeRep ]

].

In fact, this is the component that is present in every MUG it is the initial com-
ponent from which realization starts. Figure 3.16 shows the MUG representation of the
structure shown passed on to this component.

56



3 Hard Constraints in Multimodal Functional Unification Grammar

Further constraints may be added to components, such as constraints about the
instantiation state of a variable (given(X)). These can be used to constrain the applica-
bility of a component to cases where the input semantics specify (or leave out) certain
information. For example, we may specify that a contact object is only realized using
the e-mail address field, if a name for the contact is not available.

In the following, a formal account of the syntax is given:
An AVM is denoted with square brackets[ ] . It contains a comma-separated

list of 1..n attribute-value pairs in the form ofAttribute:Value . Each Attribute
must be an atom, which means, it must start with a lower case letter (a-z). It can also be
a variable (in certain circumstances).

Each value can be either atomic or an AVM. If it is atomic, it may be

• a string, enclosed in single quotation marks (’...’ ), or an atom. Such an atom
is a single word beginning with a lower-case letter (a-z ).

• an integer or a floating-point number (e.g.65),

• a comma-separated list of values, which has to be enclosed in square brackets
([...] ).

• A variable, which is expressed as a single word that begins with an upper-case
letter (A-Z).

The order of the attribute-value pairs in an AVM is not significant. Lists and
AVMs are discerned by the fact that AVMs contain only attribute-value pairs and lists
contain only values.

3.5 Conclusion

MUG implements a formalism for ambiguous, unification-based grammars. It is com-
positional, as grammar components depend only on other components that they invoke.
The ingredients to this formalism have been described in this chapter, and an examples
of the practical implementation of theVirtual Personal Assistantapplication have been
given.

Compared to the VPA implementation, the figures in this chapter are abbreviated.
Snapshots of the full attribute value matrices on the blackboard would not fit on a sin-
gle page here. This fact makes it clear that MUG deals with very large structures on
the blackboard (as do similar formalisms). Essentially, MUG stores all information or
constraints collected during the course of realization. Nothing is deleted. While this
sometimes makes it difficult to describe and understand a particular information state on
the MUG blackboard, it represents no problem for an actual implementation which does
not copy information unless needed. During grammar development, appropriate filtering
mechanisms need to be employed in order to keep an overview over this turmoil of data
structures (see Chapter 7).

57



3 Hard Constraints in Multimodal Functional Unification Grammar

What is novel about this grammar is the departure from mode-specific generators
as used in other multimodal dialogue systems. Here, we realize the output for the dif-
ferent modes in parallel. We enforce that realization components, that realize the same
meaning in different modes, need to be compatible: they need to unify. A motivation of
this is given in a subsequent chapter on Coherence (that is, cross-modal coherence, in
Chapter 5). With the grammar, we have stated thehard constraints, which always need
to be fulfilled in a particular realization. Often, dialogue systems encode as many hard
constraints as possible to be enforced at an early stage, as to reduce search space. MUG,
in contrast, leaves some choices tosoft constraints. To apply the soft constraints, we
need to define them (next Chapter) and also define a suitable control strategy (Chapter
6).

58



4 Soft Constraints: Trade-Off
Decisions in a Fitness Function

Ranking

many 
output 

variants

Device 
model

Soft constraints:
Fitness function

Situation 
model

rank and 
pick the 

best variant

Figure 4.1:The ranking process covered in this chapter.

Human communication has many registers: there are usually many ways to ex-
press what we want to say. Under the same circumstances, a range of grammatically
acceptable utterances would be truthful or not truthful, thus express the same meaning.
However, only few of these seemingly equivalent utterances would actually be uttered
by a speaker in a certain situation.

Undoubtedly, there are many factors involved in explaining a speaker’s choices,
apart from the grammatical and lexical framework a particular language imposes on
communication. An important factor is our knowledge of the recipient of the commu-
nication: who is listening and what are the communicative circumstances?And: what
can the person be expected to understand?Furthermore, using a term from theoretical
linguistics, whatperformancecan be expected of someone in processing our communi-
cation?

In this discussion, one certainly idealizes the speaker. We assume that the speaker
is a considerate one, as his communications are concise, yet understandable. This judg-
ment takes the hearer’scommunicative situationinto account. In the context of a multi-
modal dialogue system, we can probably assume that the speaker (i.e. the system) tries
to make optimal choices in terms of style and appropriateness.

59



4 Soft Constraints: Trade-Off Decisions in a Fitness Function

To do so, the system adapts to the situation and the device by means ofsituation
and device models. It does this gradually. This design decision was inspired by the char-
acteristics especially of situations, which seem gradual: for example, an environment is
not either silent or very noisy – there are many degrees of noise in between.

While the previous chapter has dealt with means thata) determine how to realize
an utterance given the hard constraints posed by grammaticality andb) to some extent,
coherence, this chapter develops the idea of soft constraints. These are goals we need
attempt to reach, and we try to do as well as we can.

For the linguistically basic questions covered by the hard constraints, it is trivial
to judge whether the choices they make are acceptable. The soft constraints are more
novel for a natural language generation system. The generation system is evaluated in
this chapter with respect to the judgements implemented by the soft constraints: a user
study was conducted in order to find out whether the soft constraints can lead to in-
creased perceived efficiency and the actual reliability of the communications in different
situations.

4.1 Economy and Efficacy

In the following, we will address solutions to a dilemma that is often seen in commu-
nication: while we intend to deliver a message, doing so does not come for free. We
endeavor to keep our own effort low, as well as our interlocutor’s effort. H.P. Grice
has most prominently formulated the principles of rational and cooperative linguistic
behavior (1975, cited in Dale & Reiter (1995)). HisMaxim of Qualitypostulates

• Make your contribution as informative as is required (for the current purposes of
the exchange)!

• Do not make your contribution more informative than is required!

In relation to that, Grice’sMaxim of Mannerstates the goalBe perspicuous, with
a specializationBe brief (avoid unnecessary prolixy). From a näıve point of view, these
maxims would postulate communication to be minimal. No unnecessary information
should be contained, no information repeated.

The linguistic and psycholinguistic evidence seems to contradict this idea. Con-
sider a situation where a speaker points at a lone cow on a meadow and says, “Look, the
cow is chewing daisies!”. Clearly, the pointing gesture has a communicative function
– namely to direct the addressee’s attention to the cow, or, in other terms, to make the
cow a salient entity, so that the following verbal utterance is coherent. Even if a deictic
referring expression, such as “that cow” is used, it would seem unnatural for the speaker
not to point to the cow, or to gesture in another way towards it. This clearly suggests that
the gesture is not redundant. For the maxim of quantity, the term “information” would
need to encompass communicative functions in general, i.e. denoteefficacy.

60



4 Soft Constraints: Trade-Off Decisions in a Fitness Function

The communicative situation influences the information gain as well as the effort.
Consider Figure 2.3. While a) might be appropriate in situations where the interlocutor
(user) is visually distracted, b) is more appropriate if the user can focus on the device.

Even if the efficacy of a potential utterance in a particular communicative situa-
tion is taken into account, a speaker may still deem pure redundancy “necessary”. For
example, it can be employed to make the signal more robust, i.e. to ensure that the
message is understood. Dale & Reiter (1995) point out that psycholinguistic evidence
shows that even unnecessary detail is employed in referring expressions. For example,
a large, black dog, which could have been uniquely identified asthe large dogor asthe
black dog, was referred to asthe large black dogby the majority of speakers (cf. Levelt
(1989)).

UI on the Fly consists of more than the MUG. While the MUG defines what is
a faithful representation of the original dialogue intention, we still need to reduce the
search space further – after all, MUG finds a number of faithful variants of the output
(typically over 100). The communicative principles introduced in this chapter allow us
to decide which variant to present. We encode the principles assoft constraints.

The approach brought forward in this thesis assumes a trade-off view for com-
municative choices. In particular, the selection of content underlies this trade-off in our
particular implementation. In our NLG approach, we follow the goals ofpredicted effort
andefficacyas outlined in the following.

• Predicted (cognitive or interactive) effort:Signals should respect the cognitive
effort required of the recipient. The message should be easy to understand. As we
are constructing an NLG system rather than a theory of natural language produc-
tion, we ignore the production effort.

– Discourse coherence.A prominent theory of local discourse coherence, Cen-
tering (Grosz et al., 1995), favors utterance-to-utterance transitions which
pose the least possible changes as to which discourse entity is in focus, and
which ones are suggested to be in focus in the next utterance.

– Cross-modal coherence.Mode-specific signals are coordinated across modes.
There is consistency on the lexical level, which relates to psycholinguistic
evidence of cross-modal priming, where, for instance, a visual stimulus can
influence lexical access for verbal signals.

– Utterance brevity.Signals should communicate information as efficiently as
possible.

• Efficacy: The message should contain all necessary information for the commu-
nicative intent. In a dialogue situation, information should be given to advance the
discourse towards the overall dialogue goal.

The two goals are mutually contradictory: whileefficacyattempts to express as
much content as possible,effort tries to keep the communication brief. Becauseefficacy
differentiates between important and less important pieces of information, we end up

61



4 Soft Constraints: Trade-Off Decisions in a Fitness Function

with output that tries to say only the important things on the screen and in the synthesized
speech.

There are different ways to implement the trade-off. An important NLG-wide
problem to address is that some of these goals operate on data that is not available during
the generation process until very late (Reiter & Dale (2000), Oberlander & Brew (2000)).
This applies to thebrevitygoal, which refers to the utterance length. In MUG, utterance
length depends on a lot of late decisions that occur at the leaves of the constituent tree.
A typical example for such a decision would be whether to include the subject line in a
nominal phrase that refers to an e-mail.

The coherence goals are realized in MUG as hard constraints, which lead to early
decisions in the generation process. The goals of predicted cognitive effort and efficacy
are realized as soft constraints, which can be violated.

4.2 Effort and efficacy in linguistics

The idea of economy is not new in linguistics. Zipf (1949) argued for quantitative bal-
ancing effects in a variety of fields, stipulating that effort consideration is universal to hu-
man behavior.Synergetic linguisticsassumes that language systems use self-regulation
to keep a range of parameters (word frequency, word length, polysemy) in certain “har-
monic” relationships to each other. Often, the object of synergetic linguistics is language
change, which is induced by a number of speakers.

The objective here is to describe communicative choices in a particular situation.
An influential idea for the generation system presented in this thesis sees conflicting
goals at the hart of linguistic decision-making. Phonology provided the first application
area of such rules. The movement turned out to be very successful, with Optimality
Theory (Prince & Smolensky, 1993) being the best-known framework.

Several authors, in particular Martinet (1952), Lindblom (1998), Flemming (2001)
developed the idea of conflicting goals. Flemming examines a specific phonetic problem,
where the (F2) frequencies in a vowel/consonant pair (V/C) adapt reciprocally. While,
in such a pair, both V and C are assumed to have an underlyingtarget frequencyF2,
speakers usually reach these target frequencies in neither phoneme; they “undershoot”.
Instead, the frequencies of both phonemes,F2(C) andF2(V ) assimilate. Flemming
analyzes the phenomenon using two basic constraints:Don’t deviate from targets!with
an associated violation cost proportional to the deviation, andMinimise articulator ve-
locity (effort)!. Constraints are weighted rather than ranked as in Optimality Theory, so
that multiple violations of one constraint can overrule the other contraint, even if the
latter constraint carries more weight. Analogous to language-specific constraint ranking
in OT, here the weights are language-specific. Flemming proposes similar solutions to a
range of problems in phonology and phonetics in aDispersion theory(Flemming, 1995).

Flemming’s constraints have much in common with the soft constraints used to
plan and realize multimodal output in the much more practical UI on the Fly system.
Both approaches use an efficiency constraint, as well as weights rather than a ranking.

62



4 Soft Constraints: Trade-Off Decisions in a Fitness Function

4.3 Weighting the constraints

The most basic way to see the interaction of hard and soft constraints is the generate&test
methodology. Here, multiple potential solutions (i.e. output variants) are generated using
the grammar that encodes the hard constraints. Each of these potential solutions fully
satisfies the hard constraints. Then, the solutions are scored using afitness function,
which looks at a range of properties of each of the solutions, assigning a score to each.
The one solution that is assigned the highest score is the solution which satisfies most or
the most important soft constraints.

In a practical system, generate&test is inefficient thus impractical. Therefore hard
and soft constraints are applied simultaneously using an appropriatecontrol strategy,
which will be discussed in Chapter 6. The remainder of this chapter is concerned with
the fitness function that implements the soft constraints.

There are different approaches to formulating the fitness function, and usually
there are several weighted considerations to make. SUPPLE (Gajos & Weld, 2004)
implements a similar generation strategy, with an over-generating grammar and a fitness
(i.e. cost) function. The system optimizes the predicted effort a user has to make in order
to reach each element of an interface. Such a user-model driven fitness function still
leaves the designers with many choices – for example, whether the cost for each user
interface element should also depend on the corpus-based (e.g. maximum-likelihood)
probability for it’s actual use.

In typical UI on the Fly applications, one generates simpler, but multimodal inter-
faces for small-screen (bottleneck) devices. The number of elements shown on a screen
is small, and the user interface widgets defined by the MUG do not differ greatly in the
time it takes to operate them. We see cost differences, however, in the degree to which
the voice modality is used (it takes time to listen to system prompts). We therefore model
the efficacy of a particular multimodal output as a combination of reading / listening time
versus the benefit of presenting important information.

The fitness function in UI on the Fly is aheuristicfunction. It combines empiri-
cally known models (such as one for the screen reading speed, based on the number of
words) and reasonably well motivated (yet unproven) assumptions about how useful par-
ticular output might be. By default, we try to be as helpful as possible, with information
that is deeply embedded in the semantic structure receiving lower priority than higher
elements. Redundant information, that is, information that is presented in both modes,
receives less than a double benefit. Information that needs to be presented according to
the assumed dialogue management component leads to a heavy penalty if it is left out
during generation stage.

The trade-off defined in the function lies in the cost of the output, which is esti-
mated in terms of the cognitive load imposed on the user, who needs to read new text on
the screen or listen to the voice output.

63



4 Soft Constraints: Trade-Off Decisions in a Fitness Function

4.4 Situation profiles

The fitness function specifies soft constraints. These are parametrized with models for
the current device hardware (screen size?) and the usage situation. The scoring approach
could accommodate device/channel-specific constraints such as screen size or slow load-
ing times for high-resolution graphics as well. We assume that each available mode is
well-specified in terms of its output characteristics, both in terms of the MUG that is
able to generate mode-specific markup (such as HTML or VXML) and of the user and
situation models that contain (default) data for each mode.

Situation screen-dynamic screen-static voice

At Work 10,1 5,1 10,1
Public Transport 1,5 2,1 10,1.5
Restaurant 10,10 10,10 5,5

Table 4.1:Example situation-specific coefficients for theα andβ vectors.

The models encode the situation and device characteristics in terms of a number
of mode-specific coefficients, as shown in Figure 4.1. These coefficients areα, β for the
situation model, andφ for the device model.α modifies the benefit (efficacy) derived
from output in a particular mode for a certain situation. For instance, one can read
changing elements on the screen more easily at work (α = 10) than while on the bus
(α = 1). β modifies the cost of output in a particular mode for a certain situation. For
instance, voice output is considered more disturbing in the restaurant (β = 5) than in it
is while on public transport (β = 1.5).1 φ represents differences in output benefit for the
modes.

The models used in VPA are pre-defined. Why? After all, we could fit the pa-
rameters given by the models to experimentally obtained data. These data would be a
corpus of ideal system output in all situations covered. Since the termsituationonly
covers up a range of varying conditions, the corpus would need to encompass a high
number of examples. It is questionable whether such a costly approach would result in
a measurable, significant improvement of adaptation quality.2

1We differentiate between changing (dynamic) and constant (static) screen output as separate modes, as
implemented in VPA. The previous chapter has simplified this to only the screen and voice modes for
illustrational purposes.

2A more realistic method not implemented here pertains to dynamic adaptation. Situation models adapt,
to be retrieved at a later time by the user. An intelligent system would probably tie the situation models
to position information such as coordinates retrieved via GPS. Such adaptation requires a feedback
loop: the system needs to know if its behavior is appropriate. However, asking the user of an actually
used system for feedback countless times is not a realistic proposition. An further alternative to the
adaptation of a model would be to translate sensory input into situation models. Such sensors are
commonly available on modern PDAs and include a microphone and some light-sensing device, such
as a built-in camera. The connection of the device to a cradle, such as used for cellphones in cars,
would give additional information. These approaches require the integration of sensor technology and
generation, certainly leaving the scope of this thesis.

64



4 Soft Constraints: Trade-Off Decisions in a Fitness Function

4.5 The fitness function

These constraints are formalized in a score that is assigned to each variant represented
by the attribute value matrixω, given a set of available ModesM . Also needed are
a situation model< α, β >, a device modelφ. The models are vectors, containing
a coefficient (αm, βm andφm) for each mode, which represents situation and device-
specific properties. The fitness function is a weighted sum of the efficacy benefit (first
part) and the efficiency cost (second part):

s(ω) =
∑

<e,d>∈E(ω)

u(e, d)−maxm∈M (βmTm(ω))

u(e, d) = P (d,
∑

m∈M

(φmαmem|realized), erealize)

To produce the efficacy benefit, the functionE returns a set ofsemantic entitiesin
e and their embedding depths ind. A semantic entity ofω is defined as any substructure
of ω whose attribute path was already contained in the original semantic specification
that was input to the algorithm. The semantic entities arising from the dialogue act
shown in Figure 3.14 (p. 52) would be a top-level dialogue act (ASKCONFIRMATION),
an action (of typeTASK), a task (SEND-EMAIL ), an e-mail, a contact (i.e. a person), an
email address, a string with the subject line, and a string with the text of the message.

For each of these entities, the functionP looks at whether it was requested by
the dialogue manager (attributerealize ) and whether it was actually realized in the
particular output variant (the mode-specific attributerealized ), which means that it
would actually be shown on the screen or included in the speech output. The value of the
realize attribute is expressed aserealize in the formula, the one of the mode-specific
attributerealized asem|realized.

P penalizes the non-realization of requested entities, while rewarding the (pos-
sibly redundant) realization of an entity.3 The reward decreases with the embedding
depthd of the semantic entity. Asd, we can simply assume the length of the attribute
path leading to the entity. The e-mail in Figure 3.14 would haved = 3, while the
ASKCONFIRMATION dialogue act would haved = 0. This mechanism assumes that
deeper entities give less relevant details, which is intuitively (and according to our ex-
perience) a good heuristic. Nevertheless, the system’s knowledge base may specify a
salient attribute, which contains an ordered list of attributes that are most salient for
the given type. For example, thecontact type defined in the VPA domain specifies the
list < firstname, lastname > as salient – as opposed to, for example, that person’s
telephone number. (For the type hierarchy used in VPA, see Figure 3.7, p. 38)

The efficacy given byP is higher for redundant realization in several modes.
However, it does not increase linearly, which reflects the intuition that redundant infor-
mation is only slightly more useful than non-redundant information. As shown in the
formula, the argument toP takes into account a situation-specific mode coefficientαm.

3Section 3.3 discusses the dialogue manager interface with the dialogue acts referred to here.

65



4 Soft Constraints: Trade-Off Decisions in a Fitness Function

The cognitive load (second part of the sum) is represented by a function that pre-
dicts the timeTm(ω) it would take to interpret the output. This equals the utterance
output time for a text spoken by the text-to-speech system, or an estimated reading time
for text on the screen.

4.6 A first evaluation of the fitness function

Natural Language Generation systems are notoriously difficult and costly to evaluate;
adaptive systems even more so. In NLG, we don’t deal with linguistic models that make
particular predictions about language. The space of “good solutions” is rather large,
and human subjects need to be asked to judge output. Obviously, the subjects are a
heterogeneous group. Within-subject tests can make up for that; however, results are
almost never comprable to those of experiments with other systems.

The fact that tests cannot be automatically reproduced, as it is the case with anal-
ysis algorithms (with a corpus and a gold standard annotation), or with dialogue man-
agement (Walker et al., 1997), makes NLG testing expensive, and iterative development
even more so.

Dialogue systems research has produced methods of systematic evaluation, most
prominently the PARADISE framework (Walker et al., 1997) for speech systems or the
derived PROMISE method for multimodal systems (Beringer et al., 2002). One ad-
vantage of these is that evaluation can be carried out automatically, using subject data
collected only once. This helps in iterative development. To do so, PARADISE en-
codes dialogues and their sub-dialogues in slot-filler structures for the information being
passed between the computer agent and human user. Aκ statistic, calculated on the
confusion matrix of the empirical data and the target dialogue descriptions (slot-filler
arrays) yields a form of dialogue success. Efficiency measures are introduced as cost
functions. User satisfaction and other subjective measures are correlated to the automat-
ically derived data. Thereby, a weighting is calculated: how important are the different
cost measures for user satisfaction? By means of this correlation, new iterations of the
system can be analysed and user satisfaction measurements can be estimated.

In some ways, the PARADISE methodology relates to the soft constraint based
optimization approach employed in UI on the Fly. We already try to optimize our com-
munication strategy based on weighted cost and efficacy measures. Measuring the suc-
cess of such a system using a similar, or even the same fitness function makes little
sense.

Adaptive systems pose further challenges to evaluators. Adaptation to users, in
particular special-needs users, should be tested with a representative group of subjects.
These are hard to come by, if, as in FASiL’s VPA, a multimodal system needs to be
evaluated. Such systems cater for users with partial loss of hearing or vision.4

4Whether a system is developed with the needs of representative or average users in mind is hardly im-
portant in the view of accessibility-advocates. Addressing a broad range of (sensory) deficiencies is the
goal. The fact that some sensory impairments are rare may mean that the performance of the system in
these cases is statistically almost irrelevant. Yet the system would be criticized as inaccessible.

66



4 Soft Constraints: Trade-Off Decisions in a Fitness Function

If a mobile system adapts to its usage situation, the test procedure will need to
control for the environment. Simulated distractions are almost always only a weak sub-
stitute. If we employ real-life distractions, we face ethical or liability constraints: who
would want to run subject trials about the use of a multimodal PDA in cognitively and
physically distracting situations, such as driving on a busy freeway or walking on the
sidewalk?

An alternative might be a field trial that would let users decide when to use the de-
vice. Their interactions would be evaluated in relation to the communicative situations.
Unfortunately, a field trial is not very practical, for three reasons:

1. We would need a system, not just a natural language generation module. UI
on the Fly balances constraints, and some of its choices will only prove worthwhile in
a complete dialogue. Other multimodal NLG systems will also optimize interactivity,
which again needs a full dialogue cycle.

2. The system has to be stable and free of major problems. For mobile, voice-
based systems, this is currently not yet the case. Whether the NLG system runs in a
demonstration system built only for evaluation, or whether it runs in a complex envi-
ronment constructed in a multi-party effort, they still show major usability issues. In
a user-evaluation, these will outweigh the more subtle differences in NLG choices. In
other words, if the machine does not understand the verbal input even after several tries,
the user won’t be impressed with the beautiful multimodal output.

3. If the field evaluation is successful and shows a distribution of quantitative
data, it will be difficult or even impossible to point our fingers at a single system com-
ponent. We will not find out if the NLG module did it’s job well or not so well in certain
situations, unless the subjects are actually able to criticize particular behavior. Indirect
measurements, such as task completion time, or cognitive load imposed, measure the
system as a whole.

Therefore, the soft-constraint balancing method employed in UI on the Fly was
evaluated with a small study that simulates situations and a dialogue system, gaining
direct and indirect quality measures.

4.6.1 Experimental configuration

We showed subjects not just single out-of-context utterances, but whole dialogues. Sys-
tem output on the screen and by voice was generated with the UI on the Fly system.5

The user input was pre-recorded and voice only. The dialogues played automatically
without the subject’s intervention.

In the dialogue, the (virtual) user sends an e-mail to a number of people. Recipient
names were randomly modified; so were the subject line and the body of the e-mail.
Recipients were spread over the “to”, the “carbon-copy”, and the “blind-carbon-copy”
fields of the e-mail. This varied across dialogues, too.

5The voice output was rendered by Apple’s Mac OS X TTS with a high-quality female unit-selection
voice. The screen output was shown with Internet Explorer (IE). We used a server-client architecture
with the HTTP protocol and IE as frontend.

67



4 Soft Constraints: Trade-Off Decisions in a Fitness Function

The principal dependent variable of this experiment is the subjects’ recall of the
contents of the dialogue, measuring whether subjects were able to notice differences in
the e-mail that was being sent during the multimodal dialogue and a complete e-mail
presented at the end.

Therefore, subjects were first asked to pay attention to the dialogue. After the
dialogue had been presented, subjects were presented with a questionnaire that showed a
visual representation of a complete e-mail. They were asked whether this e-mail equaled
the one that was sent in the previous dialogue. In half of the trials, the e-mail shown
did not fully represent the e-mail from the dialogue (independent variable 1), and the
subject’s task was to notice the difference or equality. The “mistakes” hidden in the e-
mail presented at the end are: a) One or more recipients had in a different recipient type,
for example, a person who was on the “cc” (carbon-copy) list in the dialogue, ended
up being on the “bcc” (blind-carbon-copy) list in the questionnaire e-mail. b) Recipients
were missing or added and c) the subject line or the body of the e-mail were significantly
altered.

The two other dependent variables examined were subjective measures ofeffi-
ciencyandreliability. The questionnaire contained, for each judgement, a 7-point scale,
which ranged frominefficientto efficientand fromreliable to unreliable.

Figure 4.2:After the recorded dialogue, subjects were presented with a questionnaire. It
shows an e-mail with or without differences from the e-mail sent during the
dialogue, and scales for two subjective judgements.

The dialogues were presented under two types of varied conditions as outlined
below. Each of the conditions (dependent variables) had two possible values.

1. In one half of the trials, the UI on the Fly system was configured to output a
top-ranked variant, which is a variant that was deemed appropriate for the situation by
the soft constraints. In the other half, the UI on the Fly system picked a low-ranked
variant. (Independent variable 2).

2. In one half of the trials, the user could pay full attention to the dialogue. In
the other half (Independent variable 3), we simulated a situation that posed a visual
and manual demand: the subject was asked to play a computer game (see Figure 4.3).
Subjects had to steer a boat down a river, avoiding obstacles by moving to either side

68



4 Soft Constraints: Trade-Off Decisions in a Fitness Function

Figure 4.3:Physical setup with MUG screen and second PC providing a distraction.

using the left and right arrow keys. While the game distracted users heavily, they could
still hear the system’s voice output and occasionally glance at the UI on the Fly screen.6

Each subject (n=20) completed 8 dialogue-questionnaire pairs.
The efficiency and reliability judgements were normalized for each subject using

the z-score
zx =

x− µx

σx

4.6.2 Results

The number of discrepancies between the e-mails presented during the mul-
timodal dialogue and in the questionnaire were evaluated, with respect to whether agood
or abadvariant was presented by the system. The results found differ for the distracted
and non-distracted situations (Figure 4.4).

In the distracted condition, subjects noticed a higher number of faulty e-mails,
when presented with agood, highly-scored variant (mean proportionM = .28) as op-
posed to when they were shown abad variant (M = .20). This should only be seen
as a trend. In the non-distracted condition, the hit-rate remained the same: there was

6This distraction was inspired by the idea of users keeping busy in the household while sending an e-mail.
While the studio setup certainly falls short of providing a realistic simulation, we believe that the visual,
manual and cognitive demands are comprable to the real-life situation.

69



4 Soft Constraints: Trade-Off Decisions in a Fitness Function

no effect ofappropriatenessaccording to the soft constraint scoring mechanism used
(M = .25).

Subjective efficiency and reliability judgements: An effect could only be seen
for the non-distracted situation. Here, subjects saw the high-ranking interactions as more
efficient (M = .59) than the low-ranking ones (M = −.17). In the distracted situation,
subjects assigned very close ratings for the high-ranking (M = −.20) and low-ranking
(M = −.14) variants (see Figure 4.6). A two-way ANOVA showed that the effect for
the non-distracted situation is statistically significant (F (1, 19) = 5.29, p < .05).7

Perceived reliability did not differ significantly for high- and low-ranking variants.
In the non-distracted situation, subjects judged the interactions as similarly reliable for
high-ranking (M = .01) and low-ranking variants (M = −.06) and also did so for the
distracted situation for high-ranking (M = .06) and low-ranking (M = 0.00) variants
(see Figure 4.6).

4.6.3 Analysis

In distracted situations, subjects were slightly better at spotting mistakes in the dialogue,
when they were shown highly-scored utterances. A weak conclusion could be that the
ordering imposed by soft constraints on the two variants (top-ranked vs. lowest-ranked)
may show a trend to improve the reliability of the communication.

However, there was no effect for the hit-rate in the non-distracted situation. There
is a simple explanation of this phenomenon: if both modes are available, subjects made
use of all the information given over the course of the dialogue and equally for the voice
and screen modes. They had enough information to spot the errors.

Overall, subjects only spotted few mistakes, which may have to do with the fact
that subjects were not sending their own messages in an interactive system, but merely
watching the dialogue.

The users perceived efficiency improved slightly through the use of the situation-
alized trade-off with the soft constraints used by UI on the Fly. More work has to be done
to look into further constraints and improve adaptivity in order increase the effect seen.
In conclusion, the finding can be considered relevant for the development of both gener-
ation components and such systems which use similar soft constraints to automatically
evaluate user interface outputs.

4.6.4 Conclusions

The data gathered during the limited evaluation experiment indicates trends. Users do
take note of the (believed) efficiency of a user interface, and the choices of the soft
constraints make a difference.

7I thank Michael Cody, Fred Cummins and Erin Panttaja for their help in implementing and conducting the
experiment. An earlier version of the evaluation methodology was developed in Panttaja et al. (2004).

70



4 Soft Constraints: Trade-Off Decisions in a Fitness Function

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.05 0.1 0.15 0.2 0.25 0.3

Proportion of false alarms

P
r
o

p
o

r
ti

o
n

 o
f 

h
it

s

normal: good and bad

distracted: good

distracted: bad

Figure 4.4:False Alarms versus Hits: in the distracted condition, there are more hits
(higher recall) and only slightly more false alarms (lower precision).

Normal
Distracted

-1.0

-0.5

0.0

0.5

normalized 
rating

Good Bad

1.0

Figure 4.5:Reliability ratings: no effect could be shown for good and bad variants under
different conditions.

71



4 Soft Constraints: Trade-Off Decisions in a Fitness Function

Normal
Distracted

-1.0

-0.5

0.0

0.5

normalized 
rating

Good Bad

1.0

Figure 4.6:Efficiency ratings: Only in the non-distracted situation, users judged the ef-
ficiency to be higher for variants deemed good by the fitness function.

The construction of the experiment emphasized the non-subjective measure of
reliability rather than its subjective measure (perceived reliability). I assume that the
experimental design impeded us in finding an effect for good and bad variants with
respect to perceived reliability.

A shortcoming of the experiment was that the task of spotting mistakes was too
difficult, even though the experiment had been improved after pilot trials. The task is
obviously different from spotting real-life mistakes, where the user’s own content is to
be validated – for example when a system misinterprets spoken user input.

The effects shown should motivate further efforts in developing methods that op-
timize a system’s actual communicative efficiency. This feature is noticed by users. We
conjecture, it is not just noticed, but alsoappreciated.

72



5 Coherence

Coherenceis a property of text or multimodal communication that contributes to what
is commonly calledgood style. It is most evident when several alternative variants of
text. Even though such variants may bear the same meaning, human communicators
show a strong preference for only a few of them. These preferred variants are usually
easy to read and understand, in other words, they are fluent. Texts with a high degree of
coherence are those in whicheverything fits nicely together.

From a linguistic or cognitive point of view, there is much to say, yet no final
conclusion can be drawn about why some texts or communications appear more coherent
than others. I distinguish between two types of coherence:Cross-modal coherence,
which is a property of simultaneous, coordinated multimodal communication, where the
speech, text or graphics presented simultaneously align with each other, anddiscourse
coherence, where consecutive sentences in a text or dialogue fit together.

Coherence is a key element in designing a dialogue-based interface. The multi-
modal interface outputs created with UI on the Fly can be coherent. This chapter presents
the two forms of coherence and defines models that can account for them in the context
of multimodal output generation with UI on the Fly.

In the Virtual Personal Assistant domain as well as in similar dialogue contexts
(flight bookings or other database query interfaces), the need for coherence is limited.
Dialogues tend to be short and to the point. Focus shifts steadily between different
pieces of information entered by the user, except in error recovery situations. For other
dialogue systems, for example in tutoring, dialogues are longer. Referring expressions,
where coherence plays an important role, are common. The UI on the Fly system has
provisions to accomodate such phenomena. But for the above reasons, they were tested
with toy domains rather than with the VPA.

5.1 Cross-modal coherence

5.1.1 Motivating cross-modal coherence

In a dialogue, interlocutors are usually consistent in their own idiosyncrasies, and they
also adopt their conversation partner’s style to some extent. Similarly, we would expect
humans and computers to be consistent in speaking and writing.

Many of the linguistic choices we make have no bearing on the semantics of com-
munication or its stylistic qualities, if viewed in isolation from their context. However,
being consistent in one’s choices contributes to good style. For example, lexical choice
should not vary: it is eithercell phoneor mobile phone. Cross-modal coherence implies

73



5 Coherence

consistency of this choice across all verbal modes.1 Humans display different forms of
coordination between communicative modes (McNeill, 1992; Oviatt et al., 1997). The
empirical evidence for a range of similar and related phenomena will be detailed in this
section.

The UI on the Fly generation system aims to be coherent and consistent across all
modes. It presents redundant content, for example, by choosing the same lexical real-
izations. It ensures cross-modal references to be accomodated. For example, a deictic
expression such asthese two e-mails(by voice) forces the specific e-mails to be put in
focus on the screen.

Cross-modal coherence motivates changes in MUG compared to grammars using
the more conventional Functional Unification Formalism. These changes consist of a
very simple principle encoded in the generation algorithm: all components realizing one
semantic entity must unify. Components may still contain mode-specific information in
an attribute named after the mode. AVMs within this attribute will not interfere with the
realization instructions of a component that realizes the same semantic entity in another
mode. All other branches of the AVM, however, must unify across modes. In short, the
AVMs allow us to distinguish information a) that needs to be shared across all output
modes, b) that is specific to a particular output mode, or c) that requires collaboration
between two modes, such as deictic pronouns. The unification principle replaces explicit
integration rules for each coordination scheme, such as the ones used by Johnston (1998).

An example of cross-modal coordination: The lexical realization mentioned
(cell phonevs. mobile phone) is an easy one, which can be taken care of by simply hard-
coding one choice. An example more relevant for the e-mail domain used in the VPA
would be the realization of a name. People can be referred to by their first or last name,
or by their full name. I expect any combination on screen and by voice to be allowed,
except for the case where a person would be referred to by first name in one mode, and
by last name in the other one.

Related priming experiments show that such an incoherentsequentialcombina-
tion of referring expressions is more difficult to process. An effect of cross-modal align-
ment or coherence insimultaneousstimuli on the performance of processing commu-
nicative output is hypothesized.

Classical cross-modal priming experiments. Generally, a first visual stimulus
allows users to access an associated semantic or lexical entity more easily, when they
process a second stimulus, or produce language. When presented visually with a am-
biguous word, subjects can identify (decide about lexicality of a synonym) one of its
meanings more quickly (Swinney, 1979). This works for picture naming tasks (with a
verbal, visual prime), (Federmeier & Bates, 1997), and for words in two languages (Liu,
1996). Cross-modal priming suggests that perception and/or production are easier if a
related prior stimulus was given. If we assume that the visual depiction is processed

1A verbalmodes is one that employs natural language, whether in spoken or written form.

74



5 Coherence

before the spoken system output, it follows that coordinated output should be easier to
process.

Alignment. (Pickering & Garrod, in press) argue that dialogue participants align their
phonological, lexical, and syntactic choices. Carefully controlled experiments support
their dialogue model. Alignment is particularly evident in question/response scenarios,
or when one interlocutor finishes the other one’s sentence. In the Virtual Personal Assis-
tant domain, there are examples where the graphical output determines the user’s choice
of responses: Let’s assume the system asks a (verbal) question and offers a set of choices
(radio buttons) for the user to pick. Obviously, we would want the screen output to align
with the voice output, for example in morphosyntactic case marking in German. In the
following examples, ACC stands foraccusativecase, DAT stands fordativecase, and
NOM for nominativecase.

Voice:

Finde
Find

pers̈onliche
personal

Nachrichten
Messages–ACC

oder
or

solche
the-ones–ACC

vom
from-the–DAT

Institut
department–DAT

oder
or

vom
from-the–DAT

Direktor?
director–DAT

Screen:Three radio buttons allow the user to choose exactly one out three
options, labeled with “pers̈onliche” (personal ones-ACC), “vom Institut”
(from the–DAT department) and “vom Direktor” (from the–DAT director).

* Screen: Three radio buttons allow the user to choose exactly one out
three options, labeled with “persönlich” (personal-Unmarked), “das Insti-
tut” (the–NOM/ACC department) and “der Direktor” (the–NOM/ACC di-
rector).

In this case, a user’s reply would use the same prepositions and thus, the same
morphosyntactic case (required by the German prepositions). Offeringpersonal, the
department, the director in nominative case and without prepositions as shown in the
alternative marked with (*) would have impeded the user’s alignment with the system.2

Managing expectations consistently. Experience from dialogue systems shows
that users generally tend to expect the system to understand phrases that it utters.3 This
could be seen as a natural alignment-related assumption about dialogue. Cross-modal
coordination allows a system to send clear signals about the system’s capabilities, rather
than sending different ones.

2This constructed in-domain example is given to support the hypothesis of cross-modal alignment – it is
not implied that alignment as shown is implemented in UI on the Fly.

3This is a common deficiency of some, mostly commercial systems, which use different resources for
generation of (canned) text and natural language understanding.

75



5 Coherence

Gestures, body posture and rhetorical moves. Gestures are known to be co-
ordinated with speech (usually preceding it). Beyond the simple case of deictics (this,
that), subjects showed shifts in body posture that coincided with high-level rhetorical
moves, in particular changes in topic (Cassell et al., 2001). While discourse-level effects
are addressed in the second part of this chapter, we can learn from discourse structure
that there is cross-modal temporal coordination of discourse units. UI on the Fly with its
generation formalism MUG incorporates that for screen and voice output.

As shown, both in temporally distinct (alignment, priming) as in simultaneous
language (or action) production (gestures), we can see coordination effects. The con-
clusion is a strong hypothesis for cross-modal coordination of verbal and non-verbal
content.

The next sections deal with the way MUG generates cross-modally coherent con-
tent.

5.1.2 Examples of cross-modal coordination

The cross-modal coherence motivated here can be found in MUG in the parallel realiza-
tion of content in all modes, where components that realize a particular semantic entity
must unify across all modes.

In the following, we will take a look at some cases where the unification principles
of MUG ensure cross-modal coordination.

Names. One of the MUG components in the FASiL VPA grammar realizes the full
referring expression for acontact. This component is controlled by a higher set of rules
that deal with the generation of referring expressions in general, employing pronouns
when appropriate. A name can be realized in various ways. We could refer to the person
in question by his/her first name, by last name, or by full name.

Without any cross-modal coordination, the system could freely choose how to
refer to a person. For example, it could refer to the same person by first name on the
screen, and by last name via voice. This is clearly inconsistent, and would be interpreted
as a flaw. In particular, if the user does not remember the full name of the person very
well, she might believe that the screen output and the voice output refer to different
people.

The solution lies in an attribute that takes on different values depending on the
form of the name. Competing components that realize the name can have aform at-
tribute, which is of valuesfirstname or lastname. The attribute ensures that a first name
only output may never be combined with a last name only output. They may, however,
be freely combined with a full name version of the same entity:

76



5 Coherence

(1)


firstname Firstname

lastnameLastname

Mode

realized 1

text concat(
〈

Firstname, Lastname
〉

)




given( Firstname ), given( Lastname )

The additional constraints given(X) here state thatFirstname and Lastnamemust be
instantiated. (Recall (Section 3.4) that a component consists of an AVM and optional
other constraints. These are, however, kept to a minimum.)

In some cases, we want to give only their first name, as in this component:

(2)



firstname Firstname

form firstname

Mode

realized1
form firstname

text Firstname




given( Firstname )

... or just the last name:

(3)



lastnameLastname

form lastname

Mode

realized1
form lastname

text Lastname




given( Lastname )

Components (2) and (3) do not unify, which avoids a situation where a first name
is given in one mode, and a last name is given in the other.

This realization of the person demonstrates cross-modal coordination. Note that
there are other considerations when realizing a reference to a person. Cultural and lin-
guistic variation prescribe certain choices for different levels of familiarity (or social

77



5 Coherence

difference) with the person.4 A full name reference is usually only chosen if the gener-
ation system needs to point out a particular person from others with the same first/last
name (a distractor set). For algorithms addressing this, see Dale & Reiter (1995), or
Horacek’s work, for instance Horacek (1997).

Deictics The deictic demonstrative pronoun “this” can refer to an entity that is em-
phasized visually (e.g. by pointing) in conjunction with the utterance. Thus, a lexical
entry for a spoken “this” will stipulate certain properties for the visual realization.

To generalize this behavior, an intermediate component layer of categoryREFEXP

takes on the task of planning referring expressions. It realizes anaphoric pronouns (e.g.
“it”), deictic pronouns (e.g. “this”) and definites (e.g. “the file”) with generic compo-
nents. Full forms are realized by calling components specific to the type of entity to be
realized, which means that there is a group of components that realize names, and other
components that realize references to an e-mail, for example by giving the recipient and
its subject line.

Syntactically higher-level components, e.g. realizing sentences or verbal phrases
always call theREFEXP layer to generate referring expressions. Via structure sharing,
they unify the semantic representation of the entity in question from the dialogue act
representation with the value of an attribute calledsem within theREFEXPstructure.

The component from theREFEXP layer shown in Figure 5.1 represents a deictic
realization for an arbitrary entity. The entity is supplied from another component (the
one that “calls up” this component) in thesem attribute. Its object type is unified with
variable ObjectType. In the branchtypetext , another component is called to provide

a realization for the type. The text is bound to variableTypeText. It could contain the
string “document” for thedocumenttype. The result of this component constructed in
voice|text is a string such as “this! document”. (The exclamation mark serves as
markup for the text-to-speech system to put a non-nuclear accent on the demonstrative
this).

Finally, the component states in thescreen-dynamic branch that the accom-
panying screen output must realize the entity fully (i.e. not as pronoun or definite), and
that the entity must be highlighted. Note that this component shows only the realization
for the voicemode. Thescreen-dynamicrealization differs – however, the component
for the other modes will have to unify with this one to ensure cross-modal coherence.

The approach shown here does not necessarily make a definitive choice of a sin-
gle referring expression. Instead, it leaves most of the decision-making tasks to the soft
constraints (described in Chapter 4). The interaction of cross-modal coherence and dis-
course coherence may play a role in refining the soft constraints, ultimately leading to a
smaller search space (see also Section 5.2 on local discourse coherence).

MUG avoids the use of explicit coordination rules, such as used for signal fusion
in the MATCH system. MATCH employs a unification-based formalism, not unlike

4We would also refer to a person by last name as Dr X, Ms X and the like – if title and gender information
was available in the FASiL VPA domain and comprable systems.

78



5 Coherence

Mode=voice

sem

png
[
numsing

]
type ObjectType



typetext


objecttype ObjectType

voice

catobjtype

text TypeText




voice


form deictic
realized1

text template(
〈

‘this! %w’
〈

TypeText
〉 〉

)


screen-dynamic

form full
realized1
highlighted1




Figure 5.1:REFEXPcomponent realizing a deictic definite description, such as “this per-

son” or “this document”.

the one MUG uses, for semantic signal fusion (Johnston, 1998). Types of cross-modal
coordination (e.g. location by pointing, commands by voice) are explicitly encoded in
rules. This makes sense given the fact that only a certain set of non-verbal cues is to be
integrated, mainly when users combine complementary types of information. MUG, in
contrast, emphasizes cross-modal coherence and avoids the use of specific rules. Specific
coordination schemata (such as deictic pronouns plus pointing) are broken down into
separate, quasi-lexical entries in the grammar. They combine to form the coordinated
structures.

5.2 Discourse coherence

Just like cross-modal coherence, discourse coherence is a property that modelsstylistic
preferences. This kind of coherence, however, is concerned with the relationship be-
tween sentences that occur in sequence. While there may be many texts that express the
same meaning, thecoherentones will be more pleasant to read and easier to understand.

Coherence criteria assume that we follow a set of basic principles when determin-
ing what information to present when in a text. As for the ordering of utterances, there
are other strong criteria to affect it – not just coherence. But within a single sentence,
coherence plays a role when we decide when and how to refer to contextual information.

79



5 Coherence

For example, we could sayJoelle has sent you three messages.or, alternatively,There
are three messages from Joelle.Which of these two output variants to choose depends
on how the sentences before and after this sentence are constructed.

In the following, I will introduce different aspects of discourse coherence, some of
which fall within the scope ofCentering Theory(Grosz et al., 1995). Centering has been
developed since the mid-1990’s as a cognitively motivated theory of discourse coher-
ence. I demonstrate that Multimodal Functional Unification Grammar can accomodate
aspects of the theory, in order to allow for discourse coherence to be a soft constraint in
the realization process.

5.2.1 Different aspects of discourse coherence

In the following, different natural language discourses expressing the same four state-
ments can be seen. The statements (or:propositions), which express one factoid, are:

1. Jackie is an 11 year-old girl from Johannesburg.

2. Jackie owns a German Shepherd.

3. Jackie’s brother owns a rabbit.

4. One day, Jackie’s German Shepherd mauled her brother’s rabbit.

I will start with a seemingly random realization. Each of the following sentences is
grammatical and expresses one of the above propositions:

(A) One day, the dog mauled the rabbit. Jackie’s brother owns a rabbit.
Jackie is an 11-year-old girl from Johannesburg. Jackie owns a German
Shepherd.

This short text is difficult to understand and would not be formulated by a considerate,
normally intelligent speaker. It violates several communicative principles relating to
coherence.

One of them is that determiners such asa andthe in referring expressions such as
a dogor the rabbitneed to signal whether they introduce new entities in the discourse or
refer to old ones. Correcting this mistake results in a slight stylistic improvement:

(B) One day, a dog mauled a rabbit. Jackie’s brother owns the rabbit. Jackie
is an 11-year-old girl from Johannesburg.She owns the German Shepherd.

A further communicative principle is that pronouns are employed when the object that
they refer to has already been introduced, and that we usually do not introduce a new
person in a possessive attribute, asJackieis introduced inJackie’s dog. Speakers also
tend to use the more specific description first, and a more general description later on:

(C) One day, a German Shepherd mauled a rabbit. Jackie is an 11-year-old
girl from Johannesburg who owns the dog. Her brother owns the rabbit that
was bitten to death by the animal.

80



5 Coherence

Even with the referring expressions corrected, the order in which all the people and
animals are introduces makes processing the language difficult. The text does not appear
to befluent. This is where Centering theory provides a valuable explanation, as to why
following discourse tends to be preferred over each of the previous ones:

(D) One day, a German Shepherd mauled a rabbit. The dog’s owner is
Jackie, an 11-year-old girl from Johannesburg. The rabbit was kept by her
brother.

Another aspect of discourse coherence deals with therhetorical structureof text. Theo-
ries of rhetorical structure explain, how propositions are ordered to maximize the cred-
ibility of the argument that is made. It provides some (insufficient) rules for the use of
discourse connectives, such aswhile, butor even though. Rhetorical structure takes place
in longer texts or dialogues, where rhetorical relationships can be found to hold between
larger spans of texts. Rhetorical theories such asRhetorical Structure Theory(Mann &
Thompson, 1988) often provide an important means to aggregate (structure) discourse
in Natural Language Generation. The above dialogue could emphasize the parallelism
between the second and third sentence:

(D) One day, a German Shepherd mauled a rabbit. The dog’s owner is
Jackie, an 11-year-old girl from Johannesburg, while the rabbit was kept by
her brother.

In multimodal user interfaces, however, only a limited set of rhetorical moves can
be expected to be found. Therefore, I opt not to deal with rhetorical structure in this
thesis.

Most aspects of discourse coherence are difficult to capture. The ordering of
utterances interacts with various contextual contraints, such as the standards set by the
text genre. For instance, a newspaper article would provide a compact summary in a lead
sentence:A dog of an 11-year-old Johannesburg girl has mauled a rabbit. The dog, a
German shepherd, mauled the pet, when (...). An alternative ordering would be chosen
by a police report, or during an oral account given by the rabbit’s owner.

Given comprable circumstances and communicative intents to compare different
sequences of utterances, however, a theory of local discourse coherence can predict hu-
man preferences for some of the discourses. For the purposes of this discussion, I assume
anutteranceto be whatever is generated by the application of a grammar (MUG), but no
more than one syntactic sentence.

5.2.2 Centering Theory

Centering is a model of local coherence, developed by Grosz et al. (1995): it looks at flu-
ency as a property emerging from two adjacent utterances at a time. Centering uses two
violable constraints. When these constraints are fulfilled, the transition between the two
utterances is coherent:Cohesionis a constraint stating that utterances should maintain

81



5 Coherence

the same center of attention, which I will calltopic in the further discussion.Salience
postulates that an utterance should realize its topic in the most prominent position.5 This
is (depending on the language) usually the subject. I will define formally, how centering
defines the topic and what the relative preference for Cohesion and Salience is.

Centering theory provides a model that can explain the reasoning leading to steps
(C) and (D) above. Apart from this model, an algorithm to choose valid determiners
(the, a) as shown in step (B) can be formulated in MUG.

Attentional state

Centering describes the relationship between adjacent utterances in terms of thedis-
course entitiestheyrealize. A discourse entity is basically anything that can be referred
to: living beings, material things, ideas. A discourse entity is realized by an utterance,
if it is mentioned or referred to. Example: the sentenceShe lives in Johannesburg and
owns a dogrealizes the following discourse entities:Jackie, Johannesburg, Jackie’s dog
providedsheactually refers to Jackie. Each utterance influences the attentional state
through the entities it realizes.

The attentional state is defined in terms of three data structures (centers), thus:

1. The forward-looking centersare organized in a list (CF) of discourse entities,
ordered according to their syntactic role in the sentence. While a discussion of
syntax would extend beyond the scope of this introduction, it is important to note
that the subject is usually the first element in the list, and optional elements (which
could be left out without impeding the grammaticality of the sentence) appear at
its end. The ordering is deemed to be specific to the language.

2. Thepreferred center (CP)is the highest-ranking element of the CF.

3. Thebackward-looking center (CB)is a single entity that has been realized in both
the current utterance and the preceding one. If there are several such entities, it
is the one entity that was ranked highest (frontmost) in the CF of the preceding
utterance. It can be seen as thetopicof the previous utterance.

In the following, simple examples are given to illustrate what is predicted by centering.
Table 5.1 lists the centers for these example sentences. The two principles of Cohe-
sion and Salience will be formally defined and ranked. Their fulfillment determines the
quality of thetransitionbetween two utterances.

Some examples

The following example discourses use the same semantic propositions as above. The
discourses given, however, are formulated to demonstrate the different Centering princi-
ples of Cohesion and Salience. Consider the following short discourses, which differ in
thecohesionof utterances. Which one is the stylistically preferred one?

5I follow Kibble (2001) in his breakdown of the original Centering model into Cohesion and Salience.

82



5 Coherence

Ex. Utt. CF CB CP Transition

E/F 1 Jackie 0 Jackie
E/F 2 Johannesburg, dog Jackie Jackie CONTINUE

E 3 rabbit, dog dog rabbit ROUGH SHIFT

F 3 rabbit, dog, Jackie Jackie rabbit RETAIN

G/H 1 dog, rabbit 0 dog
G 2 Jackie, dog, Johannesburg dog Jackie RETAIN

H 2 dog, Jackie, Johannesburg dog dog CONTINUE

I/J 1 Jackie 0 Jackie
I/J 2 Jackie, dog, Johannesburg Jackie Jackie CONTINUE

I 3 dog, rabbit dog dog SMOOTH SHIFT

J 3 dog, rabbit, Jackie Jackie dog RETAIN

Table 5.1:Attentional structure for the examples in the text

(E)

1. Jackie is an 11 year-old girl.

2. She lives in Johannesburg and owns a dog.

3. One day, a rabbit was mauled bythe dog.

(F)

1. Jackie is an 11 year-old girl.

2. She lives in Johannesburg and owns a dog.

3. One day, a rabbit was mauled byher dog.

The Centering model predicts that (F) is preferred over (E). In (F), the phraseher
dogrefers back toJackie. Therefore in (F), and not in (E), the topic (CB) does not change
between utterances 2 and 3, it remainsJackie. (E) violates the Cohesion principle. In
the following two texts, another principle is violated:

(G)

1. One day, a German Shepherd mauled a rabbit.

2. Jackie is an 11-year-old girl from Johannesburg who owns the dog.

(H)

1. One day, a German Shepherd mauled a rabbit.

2. The dog is kept by Jackie, an 11-year-old girl from Johannesburg.

83



5 Coherence

Centering predicts that (H) is preferred over (G), because it realizes the topic (the
dog) in the most prominent position of the second utterance. (G) does not fulfill the
Salience principle.

Which principle is more important? Examples such as the following can give a
first indication:

(I)

1. Jackie is an 11-year-old girl.

2. She lives in Johannesburg and owns a dog.

3. One day, the dog mauled a rabbit.

(J)

1. Jackie is an 11-year-old girl.

2. She lives in Johannesburg and owns a dog.

3. One day, her dog mauled a rabbit.

Utterance (I3) shifts the topic fromJackie to the dog. However, the sentence
realizes this topic in a prominent position. Therefore, the sentence violates only the
cohesionprinciple. Utterance (J3) does the opposite: it maintains the topic (by realizing
Jackiein the possessive pronounher), but violates thesalienceprinciple, as the most
prominent position (subject) in (J3) realizesthe dog.6

Centering, as seen by Walker et al. (1998), predicts (J) to be more acceptable than
(I): Coherence is more important than Salience. Intuition may or may not share this
view.

Cohesion and Salience: the ranked utterance transitions

Now that the centers are defined, the constraints mentioned above and utterance tran-
sitions that depend on these constraints can be formalized. Centering formulates the
Cohesion principle as the following constraint:

Do not shift the topic (if there is any)!

CB(Ui) = CB(Ui−1)

The Salience principle demands:

Formulate a center in the most prominent position!

CB(Ui) = CP(Ui)

6It is assumed that possessives such asher are ranked lower than the noun (dog) that they modify in the
CF, or at least not as high as the subject of a sentence.

84



5 Coherence

Table 5.2:Transitions between utterancesUi−1 Ui and their conditions in Centering

CB(Ui) = CB(Ui−1), or CB(Ui−1) = [?] CB(Ui) 6= CB(Ui−1)
CB(Ui) = CP(Ui) CONTINUE SMOOTH SHIFT

CB(Ui) 6= CP(Ui) RETAIN ROUGH SHIFT

Grosz et al. (1995) formulate three transitions between adjacent utterances, to
which a further distinction (of topic shifts) has been added by general consensus since.
These transitions result from the violation of some of the above constraints. Table 5.2
lists the transitions and their dependence on the constraints. The following ranking is a
direct result from prioritizing Coherence over Salience:

CONTINUE > RETAIN > SMOOTH SHIFT > ROUGH SHIFT

Given this ranking, it becomes clear why (E) is preferred over (F), and (G) over
(H), and (J) over (I): the transitions occurring of the preferred variants are ranked higher.
These transitions are listed in the rightmost column of Table 5.1.

5.2.3 Pronominalization rule

Pronominalization occurs when a pronoun (he, it, this) is used to refer to a discourse
entity, which may otherwise be referred to by name or with a definite referent (the man).
Centering claims that

If any element of CF(Ui) is realized as a pronoun inUi, so is CB(Ui).

The pronominalization rule is illustrated in Figure 5.2, which shows a different ex-
ample in an alternative form of noting the centers, as they change during the discourse.
In the figure, we see a sequence of five utterances, whereas alternatives are given for
utterances 4 and 5. Whether 4a or 4b are chosen, the transitions remain the same. How-
ever, 4a violates the pronominalization rule. 5b is preferred over 5a, because it has the
higher-ranking transition (RETAIN instead of ROUGH SHIFT), independent of the choice
taken in 4.

5.2.4 A parametric, evolving theory

The ranking of transitions established since Grosz et al. (1995) seems to be universal
and hard: if the best transition available is not used, text is predicted to be incoherent.
Why, then, do corpora contain more SHIFT than CONTINUES (in spoken discourse, Pas-
sonneau (1998)), or generally a higher percentage of SMOOTH SHIFTS than RETAINS?

85



5 Coherence

U1 U2 U3 U4

    1: Tom likes Berlin.
    2: He often goes there to see Tony.
    3: Tony is a musician, by the way.

#4a: He often meets Tony at a Jazz bar.
  4b: Tom often meets him at a Jazz bar.

#5a: The barman at the Blue Note always gives out free Jameson.
  5b: The barman at the Blue Note always gives out free Jameson for Tony.

CB: 0
CF: <Tom, Bln>
CP: Tom

CB: Tom
CF: < Tom, Tony>
CP: Tom

CB: Tony
CF: < Tony >
CP: Tony

4a/4b
CB: Tony
CF: <Tom, Tony, jazzbar >
CP: Tom

SMOOTH
SHIFT

RETAIN

CONT

5b
CB: Tony
CF: <barman, jameson,
        jazzbar, Tony>
CP: barman

5a
CB: jazzbar
CF: <barman, jameson,
        jazzbar >
CP: barman

ROUGH
SHIFT

RETAIN

U5

Figure 5.2:An example of how centering explains local coherence. Utterances marked
with # are assumed to be less acceptable in their context, in the case of 4a)
because it violates the pronominalization rule, and in case 5a) because the
RETAIN transition is preferred to a ROUGH SHIFT.

86



5 Coherence

(Kibble, 2001)? This would mean that Salience is stronger principle than Cohesion, as
Kibble suggests.

An alternative explanation is that coherence is only one goal among many. A
natural language realizer, in particular a hybrid one that relies on a small set of syntac-
tic constructions, has limited expressivity. Dialogue goals need to be pursued, among
them the confirmation of understood voice commands, or the correction of factual mis-
takes an interaction partner has made in tutoring applications. These goals may be more
important than generating perfectly coherent discourse.7

Therefore, coherence measures are a good candidate for asoft constraint, to be
included in the MUG fitness function. Obviously, weights are domain-specific and will
have to be trained on a corpus or adapted iteratively. Soft constraints may be broken
down in subgoals, for example Cohesion and Salience.

Not only the ranking of transitions has been subject of intense discussion. Orig-
inally, the ranking of grammatical functions in CF was a language-specific element of
the model. Furthermore, it is unclear what constitutes an utterance, or whether centers
are aligned among discourse participants. Such model parameters may be specific to
language or genre.

5.2.5 Centering in MUG

Local coherence seems to govern many syntactic decisions, and it plays an important part
in the generation of referring expressions. A sensible way of generating more coherent
text is by means ofplanning: before a sentence is realized, choices affecting coherence
are made for a sequence of sentences, not just for a single one. Planning and realization
can then be seen as separate system modules.

This architecture makes hard and early decisions, rendering it efficient. However,
the planning stage knows very little about the realizer’s options. A perfectly coherent
text plan may not work out, because the linguistic means to realize it are missing from
the grammar. For example, it might be coherent to realize a certain discourse entity again
in an utterance, but not as a subject. If there is no combination of grammar rules for the
specific dialogue act, which would realize the entity in non-subject position, the process
would fail. This is a realistic scenario, given that most application-tailored grammars
contain templates rather than a full range of linguistic rules.

From a linguistic point of view, an architecture that separates planning from real-
ization ignores the underlying consequences that planning decisions have. For example,
coherent text might be longer. It is reasonable to assume that human speakers would
sometimes forego perfect coherence in favor of a more concise discourse. This might be
another explanation as to why there are more SMOOTH SHIFT than RETAIN relations in
many corpora.

An implementation of centering directly in the generation grammar (MUG) al-
lows for coherence judgments to be made during the realization process, before the final

7Otherwise, humans or voice interfaces might as well stay quiet, since silence arguably requires the least
effort in parsing!

87



5 Coherence

output has been generated. Obviously, only the transition from the previous to the cur-
rently generated utterance can be deduced. The planning implemented here does not
include aggregation (the process of accumulating information to be realized in each ut-
terance) or the choice of rhetorical structure, both of which would increase the search
space (in the search for the optimal solution) exponentially.

One possible implementation of Centering in a unification-based framework shifts
the perspective from an utterance-centric one to an entity-oriented one. While the orig-
inal formulation defines several centers for each utterance, these data structures can be
implemented as mostly binary values for each discourse entity (Figure 5.3). For each
entity, such value stores whether the entity is the backward-looking center (CB), the
preferred center (CP) and how it is ranked in the forward-looking center (CF). (The CF
information is not binary.) A further mechanism has to ensure that there can be only one
backward-looking center per utterance. This information is kept directly in the seman-
tic descriptors of each entity, that is: on the MUG blackboard. Additionally, a further
structure in theprevious branch notes, for each entity, the state of that entity in the
previous utterance.

type Type

objectid SomeObjectID

png PNG

centering



current


cb IsCB

cp IsCP

cf CFRank



previous


cb WasCB

cp WasCP

cf FormerCFRank






Figure 5.3:The centering structure stores the attentional state of a particular discourse

entity.

IsCP and IsCB are set procedurally, as soon as enough information about the
discourse entities in the current utterance becomes available. For example, if the gram-
mar realizes the subject of a sentence,IsCP can be set for all discourse entities.IsCB
can be set as soon as it is clear that no higher-ranked entity in the previous utterance is
realized in the current one.CFRank is set by the grammar components that determine
the syntactic realization of an entity.8

One way to determine if a certain transition holds for the current utterance is
to attempt unification of each entity with one or more specific AVMs defined for the

8In this implementation, low values indicate a high CF ranking by convention.

88



5 Coherence

transition. This unification carries out the checks of Cohesion and Salience. Essentially,
it compares the centering information stored for the particular entity in the previous and
the current utterance. Figure 5.4 contains the specific AVMs pertaining to the RETAIN

transition. These AVMs state that the CB needs to be retained (Cohesion):cb is either
1 or 0 for both the current and the previous utterance. However, the CB is not realized
as CP in the current utterance (no Salience):cp is 0, in case the entity is the CB.

objectid 1

centering


current

[
cb1
cp0

]
previous

[
cb1

]
utterance

[
cb-obj 1

]





∨centering

current
[
cb0

]
previous

[
cb0

]



Figure 5.4:Disjunction of AVMs: each discourse entity of an utterance needs to unify
with one of these two AVMs for the RETAIN transition to hold.

Obviously, an alternative, procedural check could be carried out instead. Such a
check allows for a simple constraint implementing the pronominalization rule. Whether
represented by AVMs and unification, or other forms of constraints, coherence can be
measured at some point during the realization process. It can be used to guide the search
for an optimal realization variant in the form of asoft constraint, which the generation
process optimizes. Therefore, the transition detected should influence the score of the
generated output. Augmenting the fitness function defined in Section 4.3, a schematic
version would be:

s = efficacy− cognitive load+ coherence

Efficacy, cognitive load and coherence need to be normalized to a common scale.
The normalization factor for coherence is then a system design parameter: how impor-
tant iscoherencecompared to the ease of communication of a single utterance (cognitive
load) and the efficacy of the system?

5.3 Conclusion

This Chapter gave an introduction to cross-modal and discourse coherence. Cross-modal
coherence was motivated by contextual evidence of comprable phenomena, and imple-
mented directly in MUG. Discourse coherence was demonstrated using linguistic data,
and a model that explains some of the phenomena was given with Centering theory.
Centering can be implemented in MUG. It integrates elegantly with the hybrid hard/soft
constraint approach followed in this thesis. The implementation allows decisions to be
made about the coherence of the currently generated utterance as early as possible, with-
out reducing the flexibility of the grammar.

89



5 Coherence

Further work needs to unify cross-modal and discourse coherence. If we suppose
an element on the screen is highlighted (or, an interlocutor points at something). Does
this constitute a separate utterance in the Centering sense? If accompanied by verbal
discourse, probably not. However, how is a visually salient element ranked in the CF?
Possibly higher than the verbally realized entities. Only corpus data could hint at the
possibly complex interaction between discourse entities presented in different modes.

90



6 Generation as a Constraint
Optimization Problem

Multimodal Functional Unification Grammar uses soft, violable constraints to optimize
appropriateness in a given situation. The technique comes at a cost: efficiency. Because
we cannot exactly determine appropriateness, before the final output is generated, we
need tosearchfor a good variant.

Efficiency is an important problem for natural language generation systems, if
they are applied in a dialogue system context, where near-realtime performance is nee-
ded to give prompt replies to the user. Natural language generation systems have long
operated with maximally specific dialogue acts and constraints that were hard rather than
violable. Other systems, producing discourse instead of single utterances in a dialogue
systems, simply take their time to come up with a result. With constraint optimization as
followed in this thesis in the context of a dialogue system,efficiency becomes an issue.

A hybrid system using hard and soft constraints like the one presented in the
previous chapters can only run efficiently if the right methods are used to find the best
output variant. Then, however, the results are promising. While they do not allows us to
generate complex dynamical output on today’s embedded systems like PDAs, they can
be used on server-client-architectures like the one employed in FASiL’s Virtual Personal
Assistant, where output is generated on a powerful, dedicated server.

To address the issue, we can recast the search for a good output variant as acon-
straint optimization problem. The solution to this problem is a set of grammar com-
ponents that are applied to form our final output. The grammar definesconstraints,
mainly through attribute-value matrices and the implicit unification algorithm. These
constraints need to be fullysatisfiedby any solution. Finding the best solution that
violates the fewest number or the least important soft constraints meansoptimizingit.
Solving constraint satisfaction problems, in the general case, is an NP-complete task,
let alone solving constraint optimization problems, which are NP-hard (Meseguer et al.,
2003). However, heuristic functions which estimate the final cost, given a partial solu-
tion, can help achieve good performance.

Various strategies to solve constraint optimization problems have been developed
in Artificial Intelligence research, and which ones are promising depends on the nature
of the specific task. In this chapter, I will review well-known solutions to search al-
gorithms and apply them to generation with soft-constraint-based functional unification
grammars. Performance figures for these algorithms in the context of natural language
generation will be presented.

Apart from efficiency, a further desirable property of some of the algorithms pre-
sented in this chapter is that they allowanytimesearch. That means that the realization

91



6 Generation as a Constraint Optimization Problem

process can be stopped at any time, and a complete output variant is returned: the one
that is judged to be the best i.e. most appropriate at the time.

6.1 An efficient implementation

The steps involved in generation with a MUG can be summarized in three types of
actions.

1. Identifying grammar components (rules) which unify with part of the input-structure
(i.e. satisfy the hard constraints) and, as a set, yield the optimal or a good solution
according to the fitness function (i.e. optimize towards the soft constraints). This
involves multiple executions of the next step.

2. Unification of each selected grammar rule

3. Evaluation of functional expressions

Techniques to efficiently implement the unification (step 2) of feature structures
commonly employ destructive unification, which avoids the copying of structures. In
the MUG implementation, unification is additive, so that it is reversible when needed by
backtracking. Profiling experiments with the implemented algorithms were conducted.
They showed that unification accounts for less than a fourth of all processing time, if
destructive unification and a stack-based backtracking framework is used.

The evaluation of functional expressions (step 3) is optimized in that shared func-
tional expressions are only evaluated once. Evaluation is cached across solutions (gen-
eration variants). Lazy evaluation techniques, which only evaluate partial expressions
when needed, would not help us in MUG, since the final results, e.g. of string concate-
nation operations, are needed by the fitness function.

To identify the right grammar components (step 1) and apply them in an efficient
order is a more complicated matter altogether. A range of techniques can be applied –
some of them result in significant improvements in efficiency. The search techniques
discussed here apply to other natural language generation systems with optimization
elements. Therefore, they will be present in more detail in the remainder of this chapter.

6.2 Formalizing the problem - the search tree

The generation algorithm recursively unifies a grammar component with each constituent
substructure of the current blackboard structure. Therefore, it faces a choice point when-
ever there is more than one unifiable component available. The goal of the algorithm is
to find the single combination of choices that minimizes the fitness function1. Following
common practice, I view the search as a process whose state can be represented in tree

1I follow AI practice is using acostor penaltyin this discussion, while the fitness function as defined in
Chapter 4 uses a score. The best solution is the one with the lowest cost, or the highest score.

92



6 Generation as a Constraint Optimization Problem

1

2

multimodal_3 (screen_static)

3

multimodal_2 (screen_dynamic)

4

5

9

multimodal_1 (voice)

status_1 (screen_static)

contact_3 (screen_static)

14

ui_modfield_1_short 
(voice)

15

fieldtext_5 (screen_dynamic)

16

fieldtext_5 (voice)

6

askinfo_1 
(screen_dynamic)

7

askinfo_1 (voice)

8

contact_3 
(screen_static)

11

ui_modfield_2_long 
(voice)

12

fieldtext_5 (screen_dynamic)

13

fieldtext_5 (voice)

10

askinfo_2 
(screen_dynamic)

h=-1.99

h=-1.59

h=0.14

h=-2.66

h=-2.71

c=-0.063
(...)c=1.39

(...)

c=-0.061
(...)

Figure 6.1:A partial search tree. It shows the first steps to generate a multimodal output
for anASKINFORMATION dialogue act. Modes are given in parenthesis.

93



6 Generation as a Constraint Optimization Problem

form (Figure 6.1). Each choice point is depicted with a node in the tree, with one leaving
arc (to daughter nodes) to each possible choice. The leaves (terminal nodes) of the tree
represent partial solutions during the process. The choices leading to the solution are
encoded in the path from the root node to a leaf node (see Figure 6.1).

A search algorithm can be optimized in different ways:

1. The overall order in which the terminal leaves of the tree (partial solutions) are
explored further (see Sections 6.3, 6.4.1, 6.4.4)

2. The order in which the arcs of a single node are explored (see Section 6.4.3)

3. The order in which the free variables are instantiated, i.e. which remaining unex-
panded constituents on the blackboard are expanded next (see Section 6.5.1)

4. which terminal leaves are selected for pruning (not explored further) (see Section
6.4.2)

In the remainder of this chapter, common implementation techniques will be dis-
cussed and applied to the generation problem. Many of the underlying search algorithms
are classical (see, e.g., Russell & Norvig (1995)), others have been investigated more
recently. For a formal overview, see Meseguer et al. (2003). Results of the different al-
gorithms for the Figure 6.2 compares runtimes of each of several combinations of search
strategies for eight test cases taken from theVirtual Personal Assistantapplication.

6.3 Depth-first backtracking search

Depth-first backtracking searchcan be seen as a default search technique. It simply
explores each first available choice for each node until a solution is found, receiving no
direction in which paths to explore when. The leftmost arcs of the search are always
build first: nodes are created in ascending order as enumerated in Figure 6.1.

If at some point in the search, no choice is available that would satisfy all prior
constraints, the search algorithm makes a set of choices undone: itbacktracks, until the
next earlier choice can be revised. Choices are undone in a last-in-first-out fashion: first,
the current node is explored. If no further choice is available at this node, the next choice
farther up in the tree is undone in a last-in-first-out fashion, and so forth.

In backtracking search, the effect of choices is usually encoded in elements on a
stack, so choices may be undone by removing elements from the stack. In MUG, this
means that only the changes introduced by a unification are stored on the stack. Rewind-
ing to an earlier state is cheap. Still, depth-first in general is costly (time), as it explores
all solutions completely before looking at any soft constraints. Space requirements only
depend on the size of the currently calculated solution, as competing solutions are not
stored concurrently.

As a default, we assume that structure sharing does not imply structure copying.
The implementation avoids copying unless necessary. Thus, constraints imposed by the

94



6 Generation as a Constraint Optimization Problem

instantiation of variables – i.e. constraints imposed by a unification process – are propa-
gated and checked immediately. If unification succeeds, the new constraints imposed by
a grammar component are compatible with the solution found so far.

6.4 Methods based on a heuristic function

Most prioritization involves a heuristic that predicts the final cost, given only a partial
solution.2 If a heuristic isadmissible, it never overestimates the cost, ideally giving
a lower bound of the cost. Commonly, such heuristics are difficult to come by. The
quality of the heuristic influences the efficiency of the algorithm. The faster the heuristic
converges to the final cost, the better.

The admissible heuristic function used for the experiments discussed here (and
for the UI on the Fly system) calculates the lower bound of the predicted final score. It
is equivalent to the fitness function, except that for unknown values (e.g.realized
attributes), we assume such values which minimize the cost. That means that we assume
that all semantic entities are realized (realized attribute is1), and that the produced
textual output is empty, unless it is already instantiated. (Concatenations and text tem-
plates are factored in as much as possible). A non-admissible heuristic would not make
these conservative assumptions. It would rather assume realistic defaults, in particular
for the length of the produced text.

Heuristic costs are given for some nodes ash in Figure 6.1, final costs arec. The
figure shows part of an actual search tree from a generation process with MUG.

Calculating the heuristic costs time, however, as Figure 6.2 shows (bars 2 and 4
from the left, whose basis only differs in that the heuristic is calculated and a bound
is applied): if it is calculated (as in bar 4), but does not lead to a sufficient reduction
in actually explored partial solutions, it will increase overall runtimes. The admissible
heuristic, for example, does not rule out many variants. A non-admissible heuristic (not
shown) brings the desired effect, but optimality cannot be guaranteed, which would make
comparison of efficiency more difficult. The same effect can be seen for the best-first
algorithm as described in the next section: when the bound is calculated (bar 3), overall
runtimes are higher than otherwise (bar 1).

6.4.1 Breadth first, best first and beam search

Breadth first searchexplores all paths (and partial solutions) in parallel, thus requires
keeping several choice stacks to note the effects of choices (i.e. the additional con-
straints). Nodes in Figure 6.1 are created in this order: 1, 2, 3, 4, 5, 6, 9, 7, 10, 8, 11, 14,
12, 15 (...).

2In the search tree, partial solutions are such tree leaves from which branches can originate (downwards).
The branches haven’t been explored yet and are not known beyond the fact that they exist. Branches
exist in the MUG expansion algorithm if there are unexpanded constituents on the blackboard.

95



6 Generation as a Constraint Optimization Problem

Best first search(BFS) increases the chances of finding a good solution at an early
point of time. It explores the most promising leaf first, using a fitness heuristic. In this
case, the search may be stopped at any time, yielding some (presumably good) result.

The caveat here is that these search methods have untractable space requirements,
but can be improved by only looking at the bestk searches at a time (beam search) and
stopping when the first solution is generated. This search is not optimal, which means
it is not guaranteed to find the best solution. However, it may represent a good trade-off
between memory usage, runtime and quality of the solution.

Unfortunately, it has proven insufficient in the MUG algorithm to simply discard
all the partial solutions that fall outside the search beam: whenever hard constraints
cause a search path to be cancelled at a later point, the search beam becomes narrower,
because previous solutions cannot be retrieved any more. Cancellations are frequent in
MUG: either because there is not unifying grammar component available for a certain
partial solution, or, more commonly, the lower bound (admissible) cost heuristic raises
above the best previously found solution (see next section). Therefore, our beam search
is only practical without bounding, and with a “safety net” that resorts to another search
method, if no solutions are found.

An attempt was made to dynamically increase the beam size and re-run the search
with the new beam size, until a solution is found. This method could be termediterative
broadening. Unfortunately, it showed only limited success. This applies to an increase
of beam size (in terms of an increased number of solutions), as well as to an increase in
threshold from the highest beam edge, so that variants with a higher predicted cost can
be kept within the dynamic threshold. One reason for the failure of such an algorithm
may be that the search often fails (cancels all the solutions in the beam) at late stages,
causing the search to duplicate many steps. Also, with increasing beam size, more and
more structures need to be stored, which is costly.

6.4.2 Branch & bound

Branch & bound (B&B) uses a standard depth-first search until the first solution is found.
Then, in the standard backtracking fashion, further solutions are explored. However,
partial solutions are continuously evaluated by the heuristic function. If a heuristic cost
rises beyond the actual cost of the best previously found solution, the partial solution is
pruned. For example (Figure 6.1), the branch originating from state 11 can be pruned, if
the solution with cost−0.061 is already known.

If used with an admissible heuristic, this algorithm is optimal. For the MUG
algorithm with an admissible heuristic, however, the improvement through bounding is
eaten up by the additional cost of calculating the heuristic cost. In fact, very few search
paths are pruned, as the lower bound converges only slowly towards the final cost.

Only if we use a non-admissible heuristic, which sometimes may overestimate the
cost, we see a significant improvement. The heuristic used is good enough to not prune
the best paths, so while we are not guaranteed an optimal solution, we probably receive
a good one.

96



6 Generation as a Constraint Optimization Problem

6.4.3 Leaf ordering (local best first search)

It is important for the branch & bound algorithm to quickly reach a first solution. This
solution should be a good one, i.e. have a low cost, in order to allow the algorithm to
prune a high number of search tree branches without exploring them further. Combining
the B&B with local best first search(LBFS) represents a step in just this direction. This
search has the advantage (over BFS) that its memory requirements will not get out of
hand. LBFS optimizeslocally, choosing the best next arc from a single node before its
siblings. The advantage of LBFS over LBS is that there are fewer open alternatives with
costly memory needs at a time. Only the branches originating at this node need to be
stored at one time, and standard backtracking can be employed to explore all of them.

For example (Figure 6.1), LBFS would prioritize state 9 over state 6, because the
heuristic cost of 9 (h=-2.71) is lower than the one of 6 (h=-2.66), and similarly for state
14, which is preferred over 11. However, other than in BFS, once 9 is chosen, it will be
fully explored: upon reaching 14, the algorithm does not jump back to 6, just because
the heuristic shows a higher cost (h=-1.59) than what node 6 (h=-2.66) had to offer. The
first solution found is the one with cost−0.063: a good solution, yet not the best one. In
the following backtracking, we can immediately prune state 11.3

Local decisions do not generally lead to global optimization. Consider a case
where the grammar may go for a “simple” component, which realizes the utterance
directly with canned text and incurs a penalty for not realizing some important detail in
its output. Alternatively, a more compositional component may be chosen, which leads
to the use of many others, building the utterance phrase by phrase, word by word. The
second choice may seem better in the eyes of a non-admissible heuristic, as it seemingly
does not incur penalty points (yet). Therefore, it is explored first. In the long run,
however, the final result may still be more costly than the “simple” one.

So, combining LBFS with a global cut-off (generating only the firstk solutions)
often misses good solutions, in particular if they are introduced by early choices. How-
ever, in general it results in better and earlier first results.4

6.4.4 Iterative deepening

Iterative deepening (Korf, 1985) brings a significant improvement for natural language
generation with soft constraints. The general idea of iterative deepening is to start a
branch & bound search with an initially too low cost bound, so that all (or most) partial
solutions are pruned using the heuristic. Then, search is repeated with an iteratively
increased bound. As soon as at least one solution is found, iteration stops, and the best
solution found during this iteration is returned.

3In larger searches, it is obvious that a lower initial bound allows us to prune more branches than a higher
one would do. In this case, we would prune at node 11 even if leaf 8 would be reached first.

4An interesting extension would be to explore other ways of prioritizing decisions, such as using regression
to estimate the score rather than a heuristic, or looking at the average number of subsequent choices.
This would effectively prioritizeearly instead ofgoodsolutions.

97



6 Generation as a Constraint Optimization Problem

Algorithm efficiency

0

20

40

60

80

100

120

i-dep(off), bound(off),

cutoff(500), algo(bestfirst),

heur(admissible)

i-dep(off), bound(off),

cutoff(500),

algo(depthfirst),

heur(admissible)

i-dep(off), bound(on),

cutoff(500), algo(bestfirst),

heur(admissible)

i-dep(off), bound(on),

cutoff(500),

algo(depthfirst),

heur(admissible)

i-dep(on), bound(on),

cutoff(500), algo(bestfirst),

heur(admissible)

i-dep(on), bound(on),

cutoff(500),

algo(depthfirst),

heur(admissible)

ti
m

e

Figure 6.2:Runtimes for various combinations of optimization techniques. (Lower num-
bers are better.) Colors encode different test cases. Only optimal algorithms
are shown. The performance of non-optimal algorithms depends largely on
their non-admissible heuristic function, and the quality of their output would
have to be quantified.

Just like in a standard B&B search, the algorithm prunes solutions, whose most
optimistic score estimate (the lower cost bound) is below the initial bound, and below all
other solutions that might be found during the same iteration. Therefore, if an admissible
heuristic is used, the algorithm is optimal.

One might think that the repetition of search steps will impede efficiency. Luckily,
it does not. Searches with a low initial cost bound in MUG tend to fail early, which is
why the first iterations (which do not return a result) are not time-consuming and need
no optimizations as proposed by Reinefeld & Marsland (1994).

Iterative deepening does not depend on an early good solution, since all solutions
are explored. It would be reasonable to expect an additional benefit from early good
results, since additional bounding as in the standard B&B algorithm could still be en-
forced. However, when we employ LBFS as proposed earlier, we see its small benefit
eaten up by the cost of copying local partial results during LBFS.

98



6 Generation as a Constraint Optimization Problem

Experimentally, the diagram in Figure 6.2 shows consistently lower runtimes for
iterative-deepening search (abbreviatedi-dep in the legend).

6.5 Further methods

Iterative deepening depth-first branch & bound search has proven to be the most efficient
search method in MUG. There are other methods which we will describe briefly includ-
ing their drawbacks that made their exploration for MUG unlikely to produce favorable
results.

6.5.1 Variable reranking (or: minimum remaining values)

The previously discussed optimization methods make changes to the order in which
partial solutions are explored further, or they cut them short. The following optimization,
in turn, takes care of another choice the algorithm has to make. To discuss this, we will
focus on the task of finding components to unify with each constituent structure, as
mandated by the MUG principles.

After the MUG application algorithm has identified all constituent substructures
on the blackboard, they may be expanded in any order, and also the modes that are cho-
sen may be expanded in any order. The expansion often means to make a choice between
several possible grammar components.Minimum remaining values optimization(MRV)
expands those constituents first, which have the fewest alternative choices. MRV focuses
on the most constrained variable, and, in the context of constraint optimization problems,
choosing a component can be seen as the equivalent of instantiating a variable.

SUPPLE achieves better efficiency thanks to MRV in two out of three problems
(target devices) (Gajos & Weld, 2004). Unfortunately, MRV is not very effective in
MUG. One reason might be the that the particular grammar used to test allows for a
fairly free combination of components: the only effective constraint imposed byASK-
INFORMATION on theREFEXPcomponent that realizes some referring expression is the
morphosyntactic case. Also, such constraints may be introduced by either component: if
the REFEXPcomponent instantiates the value forcasefirst, it effectively constrains the
choice ofASKINFORMATION.5

In SUPPLE, the list of variables is much larger. Different UI elements need to
be realized either way. In MUG, the lower-level components are not known before the
higher-level components have been selected. Therefore, the variable ordering is skewed
towards atop-downexpansion.

5Actually, no askinformation component would be available for, say, a dative referring expression for
certain verbal complements. But since unification is fairly cheap in MUG, this wrong choice has little
consequence.

99



6 Generation as a Constraint Optimization Problem

6.5.2 A* search.

This search method traditionally involves calculating a lower bound for the cost of future
choices, and add it to the cost of previous choices. Many classical constraint optimiza-
tion problems such as finding the shortest path in a graph with weighted arcs6 can be
solved elegantly and very efficiently. However, A* search suffers greatly from memory
requirements: with an increasingly bad heuristic function, it closes in on breadth-first
search and becomes unmanageable. Unfortunately, the MUG heuristic function is not
very good, as is the case in many real-life problems. Applying the Iterative Deepening
technique to A* search alleviates this problem, but still requires the current partial solu-
tion (i.e. the blackboard) to be copied time and again. Similar to global-best-first search,
it would require substantial changes to the backtracking nature of the algorithm.

6.5.3 Grammar compilation.

The MUG algorithm starts out with the input specification (dialogue act) on the black-
board. An expansion would work equally well without this specification – it would be
minimally constrained, generating all possible output variants for all possible inputs.
These variants could be saved at compile-time. At run-time, those structures which
unify with the input specification may be scored and ranked. (We simply delay the en-
forcement of some constraints imposed by the input specification, while pre-compiling
all other constraints.) The selection of matching structures may be organized efficiently
with a decision tree algorithm (e.g. binary search), which typically gives logarithmic
time complexity. For a small domain, this would be very manageable – the FASiL
VPA grammar’s search space is estimated to be less than 10000 solutions. However,
for linguistically more sophisticated grammars, as implemented in functional unification
manner and otherwise, or in broader domains, combinatorial explosion might make this
approach unlikely to succeed. One should keep in mind that the functional evaluation
step still needs to be carried out for all solutions with the dialogue act data instantiated,
and this step is expensive.

6.5.4 Obtaining an initial bound by choice classification.

Cabon et al. (1996) have proposed to applyMean Field Optimization. This means to
run several iterations of the optimization process as a pre-processing step. This gives
a probability for the variable-value assignments. As component choices can be seen as
the variables in the MUG context, one could choose the most likely components first,
produce a solution and use the cost of this solution as an initial bound. This addresses
the need of Branch & bound algorithms for an early and good bound. In an adaptive
system, a simple maximum-likelihood estimation might not be ideal. A number of prop-
erties (e.g. about the current situation) would have to be taken into account. Training a

6In more down-to-earth terms, such a graph could represent a road network with way points, where road
sections differ in length and speed limit.

100



6 Generation as a Constraint Optimization Problem

classifier with a large feature set seems to be a promising approach to obtain an initial
lower bound.

6.5.5 Improving the fitness heuristic by regression.

Classifiers such as Support-Vector-Machines (SVM) are able to handle a high number of
features, while dealing with sparse data well. They have been applied with some success
to linguistic tasks, such as text classification (Joachims, 1998) or rhetorical analysis
(Reitter, 2003b). While a fitness heuristic is usually a function motivated by intuition
and trial&error, an SVM used for regression would give a theoretically sound estimate
based on a corpus of grammar applications rather. It seems reasonable to expect that this
would be not only better motivated, but also more precise than a bound derived directly
and solely from the fitness function. Further work is needed to explore machine learning
of heuristic functions.

6.6 Conclusion

I have applied a number of constraint optimization algorithms to the special problem
of generating natural language output with MUG. As the results (Figure 6.2) demon-
strate, consistent and substantial improvements in efficiency can be achieved using a
bestfirst/depthfirst iterative-deepening Branch & bound search. If an admissible heuris-
tic is used, the algorithm is optimal.

An efficient generation algorithm is not enough. The grammars used must allow
the algorithm to make an early estimate of a solution’s appropriateness. Hard constraints
must reduce the search space enough. The test cases used here demonstrate this. Vari-
ance in generation time is high. Adaptive systems are likely to succeed in real-life if they
foresee future dialogue steps and pre-generate output as templates, rather than doing so
in real-time.

101



7 The MUG Workbench: A
Development Environment for
Generation Grammars

7.1 Introduction

When grammar-based techniques for natural language generation (and analysis alike)
find their way into collaborative projects or actual application, big grammars tend to
become hard to extend and debug. The MUG system provides a new tool set with a
graphical debugging environment for functional unification grammars, which is designed
to help grammar developers inspect the results of their work.

The particular formalism supported is Multimodal Functional Unification Gram-
mar (MUG), as discussed previously in this thesis. When compared to other natural lan-
guage generation grammar formalisms, one of the distinguishing features is that MUG
supports several coordinated modes, such as voice prompts or structural and/or language-
based screen displays. Furthermore, MUG is designed to over-generate: For each input
description, the grammar produces a range of coherent realization variants, which are
ranked by a scoring function in order to optimize the output towards situational and
device-related factors.1

7.2 System overview

The MUG System is a development tool that consists of several components. TheMUG
Formalism is a grammar specification syntax. TheMUG Enginehandles the genera-
tion and adaptation process and offers interfaces to connect external components.MUG
Workbenchis a graphical development environment. The workbench works as an in-
spection tool, which runs a test case, generating all possiblevariantsof the output, and
then gives access to the various steps taken during content realization. This was found
to be faster than the step-by-step execution in a graphical debugger.

7.3 Debugging grammars

Unification-based formalisms are generally difficult to maintain and debug. There are
various reasons for this.

1This chapter is an extended version of Reitter (2004).

102



7 The MUG Workbench: A Development Environment for Generation Grammars

• Grammars are considered independent of a parsing or generation algorithm. They
declare licensed structural operations. How a complete structural description is de-
rived from an input word (in parsing) or how some structure is built up to achieve
output (during generation), is up to the algorithm. Grammar development should
be independent of the algorithm, therefore, it should play no role in debugging.
Consequently, there is usually no clear temporal (step-by-step) view of the gram-
mar application process.

• Unification is destructive. Once a unification operation is completed, the result-
ing structure does not contain information about the origins of the data.Which
grammar rule (component) instantiated featurexy in the structure? Why did these
structures not unify?

• Unification-based formalisms make heavy use of structure-sharing. With this
method, a higher-level grammar rule (component) specifies what information is
available to its daughters. This, however, makes the structures difficult to visual-
ize and inspect.

Unification-based grammar development tools address these issues in various
ways.Linguistic Knowledge Builder(LKB, Copestake (2001)) for instance allows users
to attempt unifications and gives verbal messages if they fail. It shows tree structures to
visualize parses. Users can inspect lexical entries and type hierarchies.

MUG differs from the typed feature structure grammars used with LKB in several
ways. MUG is designed for generation rather than parsing. MUG uses only weak types.
Important ideas in MUG include over-specification and multimodality. The differences
warrant a slightly different approach to grammar development.

The two most important questions a grammar developer asks when debugging are:
Why was a specific undesired output generated?And: Why was a certain desired output
not generated?In the MUG Workbench, developers use thevariants viewto answer the
first, and thelog viewto answer the second question.

7.3.1 Inspecting variants of output: variants view

In thevariants view(Fig. 7.1), these variants may be inspected and compared: the work-
bench lists, for each variant, the components used.

One common problem with the grammar used in the FASiL project were structural
ambiguities that did not lead to an ambiguity in the output. In most cases, this was caused
by semantic information being used for the generation of text that was, in the end, not
used for the final product. This clearly seems undesirable. The workbench shows such
structual ambiguities and lists any differences in the subsets of the components that were
used to generate the ambiguous variants. The value of each component – as it occurs in

103



7 The MUG Workbench: A Development Environment for Generation Grammars

Figure 7.1:Variants and a large AVM. Attributes can be collapsed.

the final, overall AVM2 – may be inspected. Generally speaking, the variants view is a
good way to deal with faulty or extraneous variants.

Misspelled variable names, but also variables in the wrong positions in AVMs
are another common source of errors. Such variables remain unbound. The workbench
marks them clearly in the display. The developer can also inspect variables easily and
collapse or filter the rather large feature structures. Syntax errors are shown when the
grammar is loaded via the workbench user interface.

Soft constraints as formulated in the fitness function may be inspected, too. Since
they are noted in the overall AVM, the particular fitness function may be viewed by
viewing the AVM. Device and situation models can be selected (see Figure 7.2).

2In the screenshots, AVMs are called FDs, which stands forFunctional Description. This is a reference to
the underlying linguistic Functional Unification Formalism and the associated terminology. AVM and
FD are equivalent for our purposes.

104



7 The MUG Workbench: A Development Environment for Generation Grammars

Set models

Current device:

iPAQ

t610

Current Situation:

default
driving
restaurant

Save!

Figure 7.2:A choice of device and situation models is available. These are extensible.

7.3.2 Tracing the steps of the generation algorithm: log view

This view of the process is purely logical: there is no conceptual time-line in unification-
based grammars as in procedural programs. We found that a more procedural view may
help to spot problems with variants that failed to come up, furthermore it is a way to spot
efficiency bottlenecks or to simply learn about how the formalism works. We offer alog
view (Fig. 7.4) that enumerates all the steps that the MUG interpreter takes to apply a
grammar to the input. These steps are shown for each variant of the output. This view
allows inspection of the state of the sub-substructures as they were before and after a
component (for a given mode) was applied.

A useful feature in this view is the marking of steps that were undone by means
of backtracking, because – at a later stage in the generation process – an application of
a rule failed. In many cases, the cause of the failure is a bug in the grammar. In other
cases, it is desired behavior, but computationally inefficient. Such effects are visualized
in the log view.

When unification fails, the grammar developer may want to know, why. Typically,
this is the case when a desired variant is not generated by the grammar. Every AVM can
be manually unified with any grammar component. The workbench uses a relaxed notion
of unification: the process always succeeds. However, conflicting features are visually
emphasized (see Figure 7.3).

7.4 Applications

The MUG Workbench aided two experienced and one novice grammar writers to create a
multimodal UI for personal information management (handling e-mail), which contains
126 components (190 with disjunction compiled), and a second, smaller MUG (39 com-

105



7 The MUG Workbench: A Development Environment for Generation Grammars

Component unification

Unified with Component ID FD, Cat:fieldtext_4, Mode: fieldtext

Apply filter: None

scope <user_intention/email/subject>

alt(scope) < ? /email/to, ? /email/cc, ? /email/bcc>

screen_dynamic

cat fieldtext

int__rule fieldtext_3

realized 1

text subject

voice

cat fieldtext

int__rule fieldtext_4

realized 1

text recipients list

Figure 7.3:Alternative unifications (rule choices) can be attempted from the log view.
A typical question that can be investigated with this method would be: Why
did a particular component not unify with a structure?

ponents), which generates a short coherent discourse with pronouns. To test (see Panttaja
et al. (2004)) and also demonstrate the grammar, multimodal output can be made on any
networked device (e.g. PDA) with an HTML client, with text-to-speech voice rendered
on the server, as well as on simulated devices on the local workstation. A prototypical
dialogue system, not described here, has been implemented in Java to demonstrate the
use of MUG through defined application interfaces in a heterogeneous environment.

7.5 Availability

The MUG Workbench has been made available in source form at

http://www.media.mit.edu/d̃reitter/mug/

It runs on Unix and Windows architectures. The Workbench and all dependencies are
available for free under open-source licenses.

106



7 The MUG Workbench: A Development Environment for Generation Grammars

(a) (b)

Figure 7.4:a) In the log view, steps taken back during backtracking (because they didn’t
lead to valid solutions) are greyed out. b) life-size results can be demon-
strated from the workbench (design: E. Panttaja)

107



8 Conclusion and Outlook

I have discussed an approach of over-generation that is hybrid in two ways. It can com-
bine canned text and fine-grained, linguistically motivated generation. Secondly, it com-
bines the hard constraints that a grammar encodes with soft constraints encoding utility
and cognitive load. It implements the idea that communicative choices take a variety
of unequally weighted factors into account. These factors are formulated in grammar
and fitness function, separately from the control strategy that tries to find the optimal
solution.

I have presented a formalism to encode the grammars and algorithms to efficiently
implement the system, based on the well-researched unification grammars. Soft con-
straints have been motivated and formalized as a fitness function. An evaluation with
naive test subjects showed that the predictions of the soft constraints increase perceived
efficiency of the system. A practical, real-life application around personal information
management provided the basis to develop, demonstrate and evaluate the system.

Beyond the immediate needs of this application, I extended the notion of coher-
ence from cross-modal to discourse level, and described a practical application to design
grammars. On a practical level, the thesis presents an implemented, reusable and user-
friendly system that allows fissioning and realization multimodal output and debugging
and extending the grammars.

There are lessons to be learned from the work on and with the current system.

8.1 Content selection depends on further factors

The algorithm shown incorporates two functions into a generation grammar: content
selection, and the distribution of content to modes. Doing so, it bases its decision on the
following critera.

• Input specification of the dialogue management component. The dialogue man-
ager may specify that certain semantic entities should be realized.

• Utility of the output.

• Cost for the user to read or listen to the content presented.

Using these criteria, the algorithm can render output so that it is useful and does
not overwhelm the user. Content is presented in a mode that makes sense given the user’s
situation, and it adheres to the requirements of the dialogue, for example when content
needs to be confirmed and therefore rendered to the user.

108



8 Conclusion and Outlook

There are further criteria, however. Is the user familiar with the task? Does he
need additional explanations? For example, can we use the less common term ‘cc’ (as a
verb) in “CC to whom?” or should be more explicit, as in “To whom would you like to
send a copy of it?”.

The important question ofalignmentis not (yet) addressed: interlocutors align
their lexical choices (unless they want to explicitly correct the user). They strive for
parallelism of syntactic constructions. A modern generation component for a dialogue-
driven user interface should make an effort to adapt to the user in certain cases, following
human communication paradigms.

Another deficiency becomes clear when the heuristic function doing the util-
ity/cost trade-off is examined. Cognitive cost is predicted on the basis of the length
of the surface form of the output. Surely, that is not all of the cost. However, expressed
in time, it is the voice output that takes longest, so that further processing cost only plays
a marginal role. However, this cost still fails to predict how quickly the user is going to
be able to react. For verbal interaction, the effect might be small. For the visual/tactile
mode (graphical user interfaces with a pointing device such as a mouse), there are signif-
icant differences. Gajos & Weld (2004) provide a detailed model of the user’s interaction
with potential output and optimize their generated user interfaces according to that which
would reduce the interaction effort. In the FASiL domain, again, only use few graphical
user interface elements are used – such as radio or OK/Cancel buttons, and where they
are used, there is no variation, so as not to confuse the user. Even those buttons could be
adaptive: they would be bigger, if the situation suggests there is no stylus available.

8.2 Playground

The domain chosen,Virtual Personal Assistantwith conversations about whether to send
a short e-mail to one’s colleagues requesting a meeting, is not nearly rich enough to
support the sophistication discussed in the previous section.1 The first target application
has turned out to pose a number of problems for efficiency and some for adaptivity.
However, it is not rich enough to exemplify fine-grained adaptivity in mobile devices.
Nor is it rich enough to allow us to study multimodal discourse coherence phenomena.

8.3 Models based on empirical knowledge

The additional criteria for an NLG system to follow, which were proposed in the pre-
vious sections, are unlikely to be balanced by manually estimated, situation-specific
weights, as has been done for MUG. The variety of constraints warrants empirically jus-
tified weights, with possibly a large corpus of comprable multimodal interaction in dif-
ferent situations. A trainable model of multimodal coherence, alignment and situation-
adaptivity is a long-term goal. And a worthwhile one.

1Apart from that, for alignment questions, relevant information from the analysis stage is simply not
available to the generation component in FASiL.

109



Bibliography

André, E., Finkler, W., Graf, W., Rist, T., Schauder, A. & Wahlster, W. (1993). WIP: The
automatic synthesis of multimodal presentations,in M. T. Maybury (ed.),Intelligent
Multimedia Interfaces, AAAI Press, Menlo Park, CA, pp. 75–93.

Bateman, J. A., Kamps, T., Kleinz, J. & Reichenberger, K. (2001). Towards construc-
tive text, diagram, and layout generation for information presentation.,Computational
Linguistics27(3): 409–449.

Beringer, N., Kartal, U., Louka, K., Schiel, F. & Türk, U. (2002). PROMISE - a pro-
cedure for multimodal interactive system evaluation,Proceedings of the Workshop
’Multimodal Resources and Multimodal Systems Evaluation’, Las Palmas, Gran Ca-
naria, Spain.

Bolt, R. A. (1980). Put-that-there: Voice and gesture at the graphics interface,Computer
Graphics45: 337–348.

Bouayad-Agha, N., Scott, D. & Power, P. (2000). Integrating content and style in
documents: a case study of patient information leaflets,Information Design Journal
9(2): 161–176.

Bourbeau, L., Carcagno, D., Goldberg, E., Kittredge, R. & Polguère, A. (1990). Bilin-
gual generation of weather forecasts in an operations environment,in H. Kargren
(ed.),Proceedings of the 13th. International Conference on Computational Linguis-
tics (COLING’90), Helsinki, Finland, pp. 318–320.

Boves, L. & den Os, E. (2002). Multimodal services – a MUST for UMTS, Multimodal
multilingual information services for Small mobile Terminals (MUST),,Technical
report, EURESCOM Project.

Cabon, B., Verfaillie, G., Martinez, D. & Bourret, P. (1996). Using Mean Field Methods
for Boosting Backtrack Search in Constraint Satisfaction Problems,Proceedings of
ECAI96, Budapest, Hungary, pp. 165–169.

Carpenter, B. (1992).The Logic of Typed Feature Structures, Cambridge University
Press, Cambridge, England.

Cassell, J., Nakano, Y. I., Bickmore, T. W., Sidner, C. L. & Rich, C. (2001). Non-
verbal cues for discourse structure,Proceedings of the 41st Annual Meeting of the
Association of Computational Linguistics, Toulouse, France, pp. 106–115.

110



Bibliography

Cohen, P., Johnston, M., McGee, D., Smith, I., Oviatt, S., Pittman, J., Chen, L. & Clow,
J. (1997). Quickset: Multimodal interaction for simulation set-up and control,Pro-
ceedings of the Applied Natural Language Conference, San Francisco, CA.

Copestake, A. (2001).Implementing Typed Feature Structure Grammars, CSLI Lecture
Notes, Center for the Study of Language and Information, Stanford.

Dale, R. & Reiter, E. (1995). Computational interpretations of the gricean maxims in
the generation of referring expressions,Cognitive Science19: 233–263.

Dale, R., Oberlander, J., Milosavljevic, M. & Knott, A. (1998). Integrating natural
language generation and hypertext to produce dynamic documents,Interacting with
Computers11(2): 109–135.

Denecke, M. (2000). Informational characterization of dialogue states,COLING 2000.

Denecke, M. & Waibel, A. (1997). Dialogue strategies guiding users to their commu-
nicative goals,Eurospeech ’97, Rhodes, Greece, pp. 1339–1342.

Elhadad, M. & Robin, J. (1992). Controlling content realization with functional unifica-
tion grammars,Proceedings of the 6th International Workshop on Natural Language
Generation, Springer-Verlag, pp. 89–104.

Elhadad, M. & Robin, J. (1998). An overview of SURGE: A reusable comprehensive
syntactic realization component,Technical Report 96-03, Dept. of Mathematics and
Computer Science, Ben Gurion University, Beer Sheva, Israel.

Federmeier, K. & Bates, E. (1997). Contexts that pack a punch: lexical class priming of
picture naming,Newsletter of the Center for Research in Language.

Feiner, S. K. & McKeown, K. R. (1998). Automating the generation of coordinated
multimedia explanations,in M. T. Maybury & W. Wahlster (eds),Intelligent User
Interfaces, Morgan Kaufmann Publishers, Inc., San Francisco, CA.

Flemming, E. (1995). Phonetic detail in phonology: Towards a unified account of as-
similation and coarticulation,in K. Suzuki & D. Elzinga (eds),Proceedings of the
Arizona Phonology Conference 5, Features in Optimality Theory.

Flemming, E. (2001). Scalar and categorical phenomena in a unified model of phonetics
and phonology,Phonology18(1): 7–44.

Frege, G. (1892).̈Uber Sinn und Bedeutung,Zeitschrift f̈ur Philosophie und philosophis-
che Kritik100: 25–50. Translation by Max Black in Geach and Black (1970): 56–78.

Gajos, K. & Weld, D. S. (2004). Supple: Automatically generating user interfaces,Pro-
ceedings of the 9th international conference on Intelligent user interfaces, Funchal,
Portugal.

111



Bibliography

Grice, H. (1975). Logic and conversation,in P. Cole & J. Morgan (eds),Syntax and
Semantics, Vol. 3, Academic Press, pp. 41–58.

Grosz, B. J., Joshi, A. K. & Weinstein, S. (1995). Centering: A framework for modeling
the local coherence of discourse,Computational Linguistics21(2): 203–225.

Horacek, H. (1997). An algorithm for generating referential descriptions with flexible
interfaces,in P. R. Cohen & W. Wahlster (eds),Proceedings of 35th ACL / 8th EACL
(ACL/EACL 1997), Association for Computational Linguistics, Somerset, New Jersey.

Joachims, T. (1998). Text categorization with support vector machines: learning with
many relevant features,in C. Nédellec & C. Rouveirol (eds),Proceedings of ECML-
98, 10th European Conference on Machine Learning, Springer, Heidelberg, Germany,
pp. 137–142.

Johnston, M. (1998). Unification-based multimodal parsing,Proceedings of COLING-
ACL 1998, pp. 624–630.

Johnston, M., Bangalore, S., Vasireddy, G., Stent, A., Ehlen, P., Walker, M., Whittaker,
S. & Maloor., P. (2002). Match: An architecture for multimodal dialogue systems,
Proceedings of ACL-2002.

Kibble, R. (2001). A reformulation of rule 2 of Centering Theory,Computational Lin-
guistics27(4): 579–587.

Knight, K. & Hatzivassiloglou, V. (1995). Two-level many-paths generation,Proc. of the
33rd Conference of the Association of Computational Linguistics (ACL-95), Boston,
MA, pp. 252–260.

Korf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible tree search,
Artificial Intelligence27(1): 97–109.

Kvale, K., Warakagoda, N. D. & Knudsen, J. E. (2001). Speech-centric multimodal in-
teraction with small mobile terminals,Norsk Symposium I Signalbehandling, Trond-
heim.

Langkilde, I. & Knight, K. (1998). Generation that exploits corpus-based statistical
knowledge,COLING-ACL, pp. 704–710.

Levelt, W. (1989). Speaking: From Intention to Articulation, MIT Press, Cambridge
MA.

Lindblom, B. (1998). Systemic constraints and adaptive change in the formation of
sound structure,Approaches to the Evolution of Language: Social and Cognitive
Bases, Cambridge University Press, Cambridge.

Liu, H. (1996). Lexical Access and Differential Processing in Nouns and Verbs in a
Second Language, PhD thesis, University of California at San Diego.

112



Bibliography

Mann, W. C. & Thompson, S. A. (1988). Rhetorical Structure Theory: Towards a func-
tional theory of text organization,Text8(3): 243–281.

Martinet, A. (1952). Function, structure, and sound change,Word8(1): –.

Matthiessen, C. M. I. M. & Bateman, J. A. (1991).Text generation and systemic-
functional linguistics: experiences from English and Japanese, Frances Pinter Pub-
lishers and St. Martin’s Press, London and New York.

McNeill, D. (1992).Hand and mind: What gestures reveal about thought, University of
Chicago Press.

McTear, M. (1998). Modelling spoken dialogues with state transition diagrams: experi-
ences of the cslu toolkit.

Meseguer, P., Bouhmala, N., Bouzoubaa, T., Irgens, M. & Sánchez, M. (2003). Current
approaches for solving over-constrained problems,Constraints8(1): 9–39.

Moore, J., Foster, M. E., Lemon, O. & White, M. (2004). Generating tailored, compar-
ative descriptions in spoken dialogue,Proceedings of the 17th International FLAIRS
Conference.

Oberlander, J. & Brew, C. (2000). Stochastic text generation,Philosophical Transactions
of the Royal Society of London, Series A358: 1373–1385.

O’Donnell, M., Mellish, C., Oberlander, J. & Knott, A. (2001). ILEX: An architecture
for a dynamic hypertext generation system,Journal of Natural Language Engineering
7: 225–250.

Oviatt, S. (1999). Ten myths of multimodal interaction,Communications of the ACM
42(11): 74–81.

Oviatt, S., DeAngeli, A. & Kuhn, K. (1997). Integration and synchronization of input
modes during multimodal human-computer interaction,Proceedings of the SIGCHI
conference on Human factors in computing systems, ACM Press, pp. 415–422.

Panttaja, E., Reitter, D. & Cummins, F. (2004). The evaluation of adaptable multimodal
system outputs,Proceedings of the Workshop on Robust and Adaptive Information
Processing for Mobile Speech Interfaces at COLING-04.

Papineni, K., Roukos, S. & Ward, T. (1990). Free-flow dialog management using forms,
EUROSPEECH’99.

Passonneau, R. (1998). Interaction of discourse structure with explicitness of discourse
anaphoric noun phrases,in M. A. Walker, A. K. Joshi & E. F. Prince (eds),Centering
Theory in Discourse, Clarendon Press, Oxford, pp. 327–358.

Pickering, M. & Garrod, S. (in press). Toward a mechanistic psychology of dialogue,
Behavioral and Brain Sciences.

113



Bibliography

Pollard, C. & Sag, I. A. (1994).Head-Driven Phrase Structure Grammar, Chicago:
University of Chicago Press.

Prince, A. & Smolensky, P. (1993). Optimality theory: Constraint interaction in genera-
tive grammar,Technical Report RuCCS No 2, Rutgers University, Center for Cognitive
Science.

Reinefeld, A. & Marsland, T. A. (1994). Enhanced iterative-deepening search,IEEE
Transactions on Pattern Analysis and Machine Intelligence16(7): 701–710.

Reiter, E. (1994). Has a consensus NL generation architecture appeared, and is it psycho-
logically plausible?,in D. McDonald & M. Meteer (eds),Proceedings of the 7th. Inter-
national Workshop on Natural Language generation (INLGW ’94), Kennebunkport,
Maine, pp. 163–170.

Reiter, E. (2000). Pipelines and size constraints,Computational Linguistics26(2): 251–
259.

Reiter, E. & Dale, R. (2000).Building Natural Language Generation Systems, Cam-
bridge University Press.

Reitter, D. (2003a).Rhetorical analysis with rich-feature support vector models, Mas-
ter’s thesis, University of Potsdam.

Reitter, D. (2003b). Simple signals for complex rhetorics: On rhetorical analysis with
rich-feature support vector models,LDV-Forum, GLDV-Journal for Computational
Linguistics and Language Technology18(1/2): 38–52.

Reitter, D. (2004). A development environment for multimodal functional unification
generation grammars,Proc. Third International Conference on Natural Language
Generation 2nd Volume. ITRI Technical Report.

Reitter, D., Panttaja, E. & Cummins, F. (2004). UI on the fly: Generating a multimodal
user interface,Proceedings of Human Language Technology conference 2004 / North
American chapter of the Association for Computational Linguistics (HLT/NAACL-04).

Russell, S. & Norvig, P. (1995).Artificial Intelligence: A Modern Approach, Prentice-
Hall, Englewood Cliffs, NJ.

Seneff, S., Hurley, E., Lau, R., Pao, C., Schmid, P. & Zue, V. (1998). Galaxy-II: A ref-
erence architecture for conversational system development,ICSLP 98, Sydney, Aus-
tralia.

Swinney, D. (1979). Lexical access during sentence comprehension: (re)consideration
of context effects,Journal of Verbal Learning & Verbal Behavior18(6): 645–659.

W3C (2000). Multimodal requirements for voice markup languages (draft),Technical
report, World Wide Web Consortium, http://www.w3.org/TR/multimodal-reqs.

114



Bibliography

Wahlster, W. (2000). Verbmobil: Foundations of Speech-to-Speech Translation,
Springer, Berlin - Heidelberg - New York.

Wahlster, W. (2002). Smartkom: Fusion and fission of speech, gestures, and facial ex-
pressions,Proceedings of the 1st International Workshop on Man-Machine Symbiotic
Systems, Kyoto, Japan.

Wahlster, W. (2003). Towards symmetric multimodality: Fusion and fission of speech,
gesture, and facial expression,KI 2003: Advances in Artificial Intelligence, 26th An-
nual German Conference on AI, KI 2003, Hamburg, Germany, September 15-18,
2003, Proceedings, Vol. 2821 ofLecture Notes in Computer Science, Springer.

Walker, M., Joshi, A. & Prince, E. (1998). Centering in naturally occurring discourse:
An overview, in M. A. Walker, A. K. Joshi & E. Prince (eds),Centering Theory in
Discourse, Oxford University Press, Oxford, pp. 1–28.

Walker, M., Litman, D., Kamm, C. & Abella, A. (1997). PARADISE: A framework for
evaluating spoken dialogue agents,in P. R. Cohen & W. Wahlster (eds),Proceedings
of the ACL-EACL-1997, Association for Computational Linguistics, Somerset, New
Jersey, pp. 271–280.

Zipf, G. K. (1949).Human Behavior and the Principle of Least Effort, Addison Wesley.

115


	Introduction
	Multimodal Interfaces
	Human-human communication is multimodal
	Human-computer interfaces lacks this kind of multimodality.
	Why?
	A solution: adaptive mobile multimodal interfaces
	Forms of multimodal communication
	System components and processes addressed in this thesis

	Related Work
	Static Multimedia versus Interactive Multimodality
	Adding interaction modes to a system
	Principled Generation


	System Overview
	A Virtual Personal Assistant
	Process flow in a dialogue system with multimodal generation
	Requirements for the generation task
	``UI on the Fly"
	The generation process
	Positioning UI on the Fly in Natural Language Generation
	Requirements for the Dialogue Manager

	Summary: Contributions of this thesis

	Hard Constraints in Multimodal Functional Unification Grammar
	Tree structures in linguistic and visual interfaces
	Introduction to MUG
	How grammars are used in generation
	A restrictive blackboard architecture
	What grammars specify
	Attribute-value matrices in MUG
	Designating constituents in AVMs
	Grammar components are applied recursively to constituents
	Structure sharing passes information
	Grammar application algorithm
	Functional expressions in MUG
	Summary

	Semantic dialogue act representation in the Virtual Personal Assistant
	Types of dialogue acts in the Virtual Personal Assistant
	Underspecification in the dialogue manager interface

	The syntax of the MUG formalism
	Conclusion

	Soft Constraints: Trade-Off Decisions in a Fitness Function
	Economy and Efficacy
	Effort and efficacy in linguistics
	Weighting the constraints
	Situation profiles
	The fitness function
	A first evaluation of the fitness function
	Experimental configuration
	Results
	Analysis
	Conclusions


	Coherence
	Cross-modal coherence
	Motivating cross-modal coherence
	Examples of cross-modal coordination

	Discourse coherence
	Different aspects of discourse coherence
	Centering Theory
	Pronominalization rule
	A parametric, evolving theory
	Centering in MUG

	Conclusion

	Generation as a Constraint Optimization Problem
	An efficient implementation
	Formalizing the problem - the search tree
	Depth-first backtracking search
	Methods based on a heuristic function
	Breadth first, best first and beam search
	Branch & bound
	Leaf ordering (local best first search)
	Iterative deepening

	Further methods
	Variable reranking (or: minimum remaining values)
	 A* search.
	 Grammar compilation.
	 Obtaining an initial bound by choice classification.
	 Improving the fitness heuristic by regression.

	Conclusion

	The MUG Workbench: A Development Environment for Generation Grammars
	Introduction
	System overview
	Debugging grammars
	Inspecting variants of output: variants view
	Tracing the steps of the generation algorithm: log view

	Applications
	Availability

	Conclusion and Outlook
	Content selection depends on further factors
	Playground
	Models based on empirical knowledge


