
Contents lists available at ScienceDirect 

Journal of Memory and Language 

journal homepage: www.elsevier.com/locate/jml 

Indirect associations in learning semantic and syntactic lexical relationships 
M.A. Kellya,b,⁎, Moojan Ghafuriana,c, Robert L. Westd, David Reittera,e 

a The Pennsylvania State University, University Park, PA, USA 
b Bucknell University, Lewisburg, PA, USA 
c University of Waterloo, Waterloo, ON, Canada 
d Carleton University, Ottawa, ON, Canada 
e Google Research, New York City, NY, USA  

A R T I C L E  I N F O   

Keywords: 
Distributional semantics 
Semantic memory 
Word embeddings 
Mental lexicon 
Holographic models 
Mediated associations 

A B S T R A C T   

Computational models of distributional semantics (a.k.a. word embeddings) represent a word’s meaning in terms 
of its relationships with all other words. We examine what grammatical information is encoded in distributional 
models and investigate the role of indirect associations. Distributional models are sensitive to associations be-
tween words at one degree of separation, such as ‘tiger’ and ‘stripes’, or two degrees of separation, such as ‘soar’ 
and ‘fly’. By recursively adding higher levels of representations to a computational, holographic model of se-
mantic memory, we construct a distributional model sensitive to associations between words at arbitrary degrees 
of separation. We find that word associations at four degrees of separation increase the similarity assigned by the 
model to English words that share part-of-speech or syntactic type. Word associations at four degrees of se-
paration also improve the ability of the model to construct grammatical English sentences. Our model proposes 
that human memory uses indirect associations to learn part-of-speech and that the basic associative mechanisms 
of memory and learning support knowledge of both semantics and grammatical structure.   

1. Introduction 

Syntax (how words are put together) and semantics (what words 
mean) have traditionally been understood as arising from distinct 
cognitive processes. The distinction between syntax and semantics was 
famously illustrated by Chomsky (1956) with the example “Colorless 
green ideas sleep furiously”, a sentence that is grammatical but mean-
ingless. 

But can syntax and semantics be understood as arising from a uni-
tary cognitive process? Predictive neural language models (e.g.,  
Ororbia, Mikolov, & Reitter, 2017) appear to be sensitive to both syntax 
and semantics. Recurrent neural networks are able to make judgements 
about subject-verb agreement in nonsensical sentences such as “Col-
orless green ideas sleep furiously” without needing to rely on part-of- 
speech tagging or other syntactic markers (Gulordava, Bojanowski, 
Grave, Linzen, & Baroni, 2018). However, due to the “black box” nature 
of neural network models, it is difficult to say exactly what information 
is being exploited by the networks to make decisions about syntax. 

Even though the nonsense sentence “Colorless green ideas sleep 
furiously” has a set of word transitions that do not appear in English 
language corpora, the sentence has a very common English 

construction: adjective, adjective, noun, verb, adverb. How do humans 
learn that, at an abstract level, the sentence is structurally similar to 
many other sentences in their life experience? 

Jenkins (1964, 1965) and Jenkins and Palermo (1964) hypothesize 
that knowledge of the syntactic structure of language depends on in-
direct or mediated associations. More specifically, part-of-speech, or the 
knowledge that nouns can be substituted for other nouns and verbs for 
other verbs, and so on, depends on learning equivalence classes through 
mediated association. Although Jenkins (1968, 1974) ultimately 
abandoned the paradigm of understanding language and memory in 
terms of associations and equivalence classes altogether, more recent 
studies with children have found that exploiting equivalence classes is a 
powerful pedagogical technique for rapidly expanding a learner’s lan-
guage abilities (Sidman, 2009). 

To explore the hypothesis that learning the part-of-speech of words 
is based on a capacity for indirect or mediated association, we propose a 
“deep” distributional semantics model, the Hierarchical Holographic 
Model (HHM). HHM consists of a stack of holographic vector models 
that feed one into the next, which allows HHM to detect arbitrarily 
indirect associations between words. HHM is based on BEAGLE (Jones, 
Kintsch, & Mewhort, 2006; Jones & Mewhort, 2007), one of the few 
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distributional semantics models sensitive to the order of words in sen-
tences, a critical part of English syntax. 

Holographic models of human memory have a long history 
(Murdock, 1982; Pribram, 1969) and have been applied to a wide range 
of paradigms (e.g., Eliasmith, 2013; Franklin & Mewhort, 2015; 
Jamieson & Mewhort, 2011). Holographic vectors allow for easy im-
plementation of a recursive model capable of learning arbitrarily in-
direct associations. Our approach can be understood as an extension of  
Jenkins and Palermo (1964)’s work, though instead of using artificial 
grammar experiments, we use a computational approach applied to an 
English-language corpus. 

In what follows, we provide theoretical background on the 
Hierarchical Holographic Model and then evaluate the model. We give 
a proof-of-concept demonstration of HHM on a small artificial dataset 
and then train HHM on an English-language corpus. We analyze the 
relationship between the representations produced by the higher levels 
of HHM and part-of-speech (e.g., nouns, adjectives, adverbs, etc.) and 
the syntactic types proposed by Combinatory Categorical Grammar 
(CCG; Steedman & Baldridge, 2011). We show that HHM’s re-
presentations can be used to order words into grammatical sentences 
and we test HHM on the sentence “Colorless green ideas sleep fur-
iously”. HHM is an account of the mental lexicon based on a general- 
purpose computational model of human memory. HHM demonstrates 
how a single system can incorporate knowledge of both how a word is 
used (i.e., part-of-speech) and what a word means (i.e., distributional 
semantics). 

2. Theory 

In this section, we describe the BEAGLE model of distributional 
semantics (Jones & Mewhort, 2007), based on the holographic model of 
memory (Plate, 1995). We propose the Hierarchical Holographic Model 
(HHM). HHM is a recursively constructed variant of BEAGLE capable of 
detecting arbitrarily high orders of association. We then define orders of 
association as a measure of the relationship between a pair of words in 
memory. 

2.1. The BEAGLE model 

The BEAGLE model (Jones & Mewhort, 2007) belongs to the family 
of distributional semantics models, also known as word embeddings. 
Distributional models include Latent Semantic Analysis (Landauer & 
Dumais, 1997), the Hyperspace Analogue to Language (Burgess & Lund, 
1997), the Topics Model (Griffiths, Steyvers, & Tenenbaum, 2007), 
word2vec (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013), GloVe 
(Pennington, Socher, & Manning, 2014), as well as word embeddings 
extracted from neural language models such as BERT (Devlin, Chang, 
Lee, & Toutanova, 2019). Distributional models use the word co-oc-
currence statistics of a large corpus to construct high-dimensional 
vectors that represent the meanings of words. Each vector can be un-
derstood as a point in a high-dimensional space and distance in the 
space serves as a measure of similarity in meaning. Words that are 
closer together have more similar meanings. Such a space, where dis-
tance measures similarity in meaning, is referred to as a semantic space. 

In BEAGLE, each word is represented by two vectors: an environment 
vector that represents the percept of a word (i.e., the word’s perceptual 
features) and a memory vector that represents the concept of a word (i.e., 
the word’s meaning and associations). 

An environment vector (denoted by e) stands for what a word looks 
like in writing or sounds like when spoken. For simplicity, we do not 
simulate the visual or auditory features of words (but see Cox, 
Kachergis, Recchia, & Jones, 2011, for a version of BEAGLE that does 
simulate features). Instead, we generate the environment vectors using 
random values, as in Jones and Mewhort (2007). Thus, in our simula-
tions, words with similar morphology (e.g., walk and walked) have 
dissimilar environment vectors, such that the model needs to learn from 

the corpus that the two words are related. 
Environment vectors are generated by randomly sampling values 

from a Gaussian distribution with a mean of zero and a variance of d1/ , 
where d is the dimensionality. Individually, the dimensions of the 
vectors have no inherent meaning: they do not stand for specific words 
or features. A word is represented as a pattern of values across all di-
mensions. The number of dimensions, d, determines the fidelity with 
which BEAGLE stores word co-occurrence information, such that 
smaller d yields poorer encoding. 

Memory vectors (denoted by m) represent the associations a word 
has with other words. As the model reads the corpus, memory vectors 
are continuously updated. For example, the words walk and walked are 
represented by dissimilar, randomly-generated environment vectors. 
But, because the words are used in similar ways, walk and walked de-
velop highly similar memory vectors. That said, the two memory vec-
tors will not be identical, as walked is more likely to appear in contexts 
with other past-tense verbs and walk with other present-tense verbs 
(e.g., “I walked to the store and bought bread” vs. “I walk to the store and 
buy bread.”). 

BEAGLE stores two kinds of information in a memory vector: context 
and order. The context information for a target word in a sentence is the 
sum of the environment vectors of the other words in the sentence. 
Conversely, the order information for a word in a sentence is a sum of 
sequences of words that include the target word. A sequence of words is 
represented by a vector that is a convolution of the environment vectors 
of the words in the sequence. 

2.1.1. Order information 
The memory vectors are termed holographic because they use cir-

cular convolution to compactly encode associations between words 
(Plate, 1995). According to holographic theories of memory (Eliasmith, 
2013; Murdock, 1982; Pribram, 1969), patterns of neural activity in the 
brain interfere to create new associations in a manner mathematically 
analogous to how light waves interfere to create a hologram (Gabor, 
1969). Given two patterns of neural activity represented as vectors, the 
interference pattern produced by the association of the two is computed 
as the convolution of the vectors. 

To compute the order information for a target word, a sum of n- 
grams is added to the target word’s memory vector. The n-grams are at 
minimum bigrams consisting of the target word and the word im-
mediately preceding or following. The n-grams also have a maximum 
size that can be set. Jones and Mewhort (2007) use a maximum of 7- 
grams. We experiment with maximum n-gram sizes ranging from 5- 
grams to the full length of the sentence. 

For example, given the sentence, “eagles soar over trees”, BEAGLE 
updates the memory vectors for each word in the sentence: eagles, soar, 
over, and trees. For soar, the following n-grams are added into the 
memory vector msoar: the bigrams “eagles soar” and “soar over”, the 
trigrams “eagles soar over” and “soar over trees”, and the tetragram 
“eagles soar over trees”. 

Each n-gram is constructed as a convolution of the environment 
vectors of the constituent words, except for the target word, which is 
represented by the placeholder vector (denoted by ). The placeholder 
vector is randomly generated and serves as a universal retrieval cue. 
With the placeholder substituted for the target word, each n-gram can 
be understood as a question to which the target word is the answer. So, 
rather than adding a representation of “eagles soar over” into msoar, we 
instead add “eagles over”, i.e., “What was the word that appeared 
between eagles and over?”. Each memory vector can be understood as 
the sum of all questions to which that memory vector’s word is an 
appropriate answer. 

Given “eagles soar over trees”, we add “eagles ”, “ over”, “eagles 
over”, “ over trees”, and “eagles over trees” to msoar as follows: 
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t tsoar, 1 soar, before eagles

before over

before before eagles over

before before over trees

before before before eagles over trees

where is circular convolution, t is the current time step, all vectors m, 
e, and have d dimensions, and Pbefore is a permutation matrix used to 
indicate that a word occurred earlier in the sequence (see Appendix for 
discussion). Pbefore is made by randomly reordering the rows of the d x d 
identity matrix. Multiplying a vector v by Pbefore results in the permuted 
vector P vbefore . 

2.1.2. Context information 
Context information is a sum of environment vectors. For example, 

the context information for msoar and the sentence “Eagles soar over 
trees” is: 

= + + ++m m e e et tsoar, 1 soar, eagles over trees (1) 

For the purposes of the simulations reported in this paper, we only use 
the order information and exclude the context information, as we found 
little benefit to including context information in the word ordering task 
that we use to evaluate the models. 

2.1.3. Applications of BEAGLE 
BEAGLE can model semantic priming (Jones et al., 2006), the pat-

tern of semantic memory deficits in Alzheimer’s disease (Johns et al., 
2013), as well as basic memory phenomena, such as release from 
proactive interference (Mewhort, Shabahang, & Franklin, 2018). 

While BEAGLE is a model of the mental lexicon, Dynamically 
Structured Holographic Memory (Rutledge-Taylor, Kelly, West, & Pyke, 
2014) is a variant of BEAGLE applied to non-linguistic memory and 
learning tasks, such as learning sequences of actions for strategic game 
play. Kelly, Kwok, and West (2015) and Kelly and Reitter (2017) pro-
pose another BEAGLE variant, Holographic Declarative Memory, that 
learns sets of property-value pairs (e.g., colour:red shape:octagon type:-
sign) of the kind used by the ACT-R cognitive architecture (Anderson, 
2009), showing that BEAGLE’s algorithm can be applied to any problem 
domain that can be expressed in discrete symbols. 

The Hierarchical Holographic Model (HHM) can, like BEAGLE, be 
applied to a wide range of problem domains. While we evaluate HHM 
in this paper in terms of its ability to account for properties of natural 
language, HHM is intended as a general model of learning and memory. 

2.2. Hierarchical Holographic Model 

The Hierarchical Holographic Model (HHM) is a series of BEAGLE- 
like models, such that the memory vectors of one model serve as the 
environment vectors for the next model. Level 1 is a standard BEAGLE 
model with randomly generated environment vectors, except that we 
only use order information to construct the memory vectors. Level 2 
and higher are order-only BEAGLE models where the environment 
vectors are the memory vectors of the previous level. Once Level 1 has 
been run on a corpus, Level 2 is initialized with Level 1’s memory 
vectors as its environment vectors. Then Level 2 is run on the corpus to 
generate a new set of memory vectors, which in turn are used as the 
environment vectors for the next level, and so on, to generate as many 
levels of representations as desired. 

To use the memory vectors of a previous level as the environment 
vectors for the next, one must normalize and randomly permute the 
vectors. Vectors are normalized to unit Euclidean length to ensure that 
each word is equally weighted at the next level. Without normalization, 
high-frequency words would disproportionately dominate the re-
presentations at the next level. 

Permutation is necessary to protect the information encoded at one 
level from information encoded at the next level (Gayler, 2003). 

Without using permutation, the different levels of information become 
confounded and destructively interfere with each other (Kelly, Blostein, 
& Mewhort, 2013). The destructive interference arises because con-
volution distributes over addition. If we convolve a memory vector with 
another vector, that vector will distribute across all of the component n- 
gram vectors that are summed into the memory vector. If the other 
vector is also a memory vector, all of its n-grams will distribute across 
all of the memory vector’s n-grams to create a multitude of spurious n- 
gram representations. 

Thus, to transform memory vectors to environment vectors, the 
elements of all memory vectors are re-ordered according to a randomly 
generated permutation, Pgroup. For level +l 1, and all words i, the en-
vironment vectors for that level are: 

=+e P
m

m m
(

•
)l i

l i

l i l i
1, group

,

, , (2) 

where e and m are environment and memory vectors and • is the dot 
product. 

The levels in HHM can be understood as the products of memory re- 
consolidation, the process of revisiting experiences and recording new 
information about those experiences. The different levels of re-
presentation are stored separately from each other in the model for the 
purpose of examining the differential effects of representations that 
encode lower and higher orders of associations. The different levels are 
not necessarily separate memory systems, but instead could constitute 
different kinds of knowledge within a single memory system. 

2.3. Orders of association 

Saussure (1916) defines two types of relationships between words: 
paradigmatic and syntagmatic. Syntagmatic describes a relationship a 
word has with other words that surround it. Paradigmatic describes a 
relationship in which a pair of words can be substituted for each other. 

Grefenstette (1994) defines first-order, second-order, and third- 
order affinities between words and notes that computational language 
models are typically sensitive to either first-order (topic) or second- 
order (synonymy) affinities. Grefenstette (1994) defines third-order 
affinities as semantic groupings among similar words, which can be 
discovered using cluster analysis techniques. 

We define the term order of association as a measure of the degree of 
separation of two words in an agent’s language experience. Imagine a 
graph where each word in the lexicon is a node connected to other 
words. Order of association is the length of a path between two words in 
the graph. The strength of that order of association is the number of 
paths of that length between the two words. 

A pair of words are connected once for each time they have oc-
curred in the same context. In human cognition, the context is defined 
by the associations in mind at the time of encoding. Ideally, we would 
use a model of memory to determine when words are or are not in the 
same context (see §5.2 for discussion). However, for simplicity, we use 
a context that is a window of five or more words to the left and right of 
the target word. 

First-order association describes two words that appear together. In 
the sentence “eagles soar over trees”, the words eagles and trees have 
first-order association. Words with strong first-order association (i.e., 
frequently appear together) are often related in topic (i.e., have a syn-
tagmatic relationship), such as the words tiger and stripes. 

Second-order association describes two words that appear with the 
same words. Given “airplanes soar through skies” and “airplanes fly 
through skies”, soar and fly have second-order association. Words with 
strong second-order association are often synonyms (i.e., have a para-
digmatic relationship). 

Third-order association is a first-order association plus a second-order 
association (i.e., a paradigmatic relationship plus a syntagmatic re-
lationship). For example, tiger and stripes have a first-order association 
and lion and tiger have a second-order association. Thus, lion and stripes 
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have a third-order association mediated by tiger. 
Statistical smoothing algorithms use third-order associations to es-

timate the acceptability of novel bigrams (Pereira, 2000; Roberts & 
Chater, 2008). For example, unsightly bumbershoot is a perfectly ac-
ceptable adjective-noun pair, but is unlikely to appear in a corpus that 
doesn’t include this paper. But an unsightly bumbershoot is very similar 
to an unsightly umbrella. The third-order association between unsightly 
and bumbershoot mediated by umbrella can be used to judge that un-
sightly bumbershoot is an acceptable bigram. 

Fourth-order association describes two words that appear with words 
that appear with the same words. A fourth-order association is two 
second-order (or paradigmatic) associations added together. 

The sentences in Table 1 provide an artificial example of a fourth- 
order association. Words with fourth-order association are indicated in 
bold and words with second-order association are indicated in italics. 
The word pairs soar and fly, over and above, and trees and forest each 
have second-order associations. Given only the sentences in Table 1, the 
words eagles and birds do not have first-, second-, or third-order asso-
ciation, but do have fourth-order. The web of associations between the 
words in Table 1’s sentences is illustrated in Fig. 1. 

Table 1 is an artificial example. In natural language, eagles and birds 
have strong second-order association (i.e., are highly synonymous). 
Fourth-order association indicates that two words can be substituted for 
each other, but at a more abstract level than second-order association 
(synonymy). We hypothesize that word pairs that have strong fourth- 
order association, but do not have first- or second-order association, are 
words unrelated in meaning but are grammatically acceptable to sub-
stitute for each other. We expect that words with fourth-order asso-
ciation are likely to share part-of-speech or syntactic type (e.g., focused 
and emerging can both be used as a verb or adjective, see Table 2). We 
explore this hypothesis in Sections 3.3 and 3.4. 

Fifth-order and higher associations can be obtained by abstracting 
indefinitely. Eventually, all words are related to all other words in the 
language. 

Even-numbered associations are paradigmatic or super-paradigmatic 
relationships that indicate a semantically valid or, we hypothesize, 
syntactically valid substitution. 

Odd-numbered associations are syntagmatic or super-syntagmatic re-
lationships describing the association between a word and other words 
that could appear either with the word directly (first-order) or with 
another word like it (third-order, fifth-, etc.). 

No association describes a pair of words that have no path between 
them of any length. For an agent that knows only the nine sentences in  
Table 1, the words car and eagle have no association. In real language 
data, two words will only have no association if they belong to two 
different languages (e.g., the words goyang-i from Korean and borroka 
from Basque have no association with each other). 

In our description of orders of association we have glossed over the 
question of the distinct nature of syntagmatic versus paradigmatic as-
sociations. For two words to have a syntagmatic association, it is suf-
ficient for the words to co-occur in any way. Conversely, for paradig-
matic associations, the two words should be interchangeable for each 
other, which is contingent on position in the sentence or phrase. 

HHM, as implemented in this paper, is specifically a model of super- 
paradigmatic associations between words. Examining super-syntag-
matic associations is beyond the scope of our work, as our interest is in 
part-of-speech and syntactic type relationships, which are valid sub-
stitution relationships, rather than co-occurrence (or syntagmatic) re-
lationships. For the purposes of this paper, we only use order vectors in 
HHM. However, we have found that odd-numbered orders of associa-
tion are captured by recursively constructing levels of representation 
using context vectors. 

To define orders of association, we have described the lexicon as a 
connected graph. This graph is not explicitly represented by HHM. 
HHM defines a semantic space rather than a graph. Words close to-
gether at Level 1 of HHM have strong second-order association, Level 2 

Table 1 
Example of a fourth order association between eagles and birds.    

Sentences   

eagles soar over trees birds fly above forest 
airplanes soar through skies airplanes fly through skies 
dishes are over plates dishes are above plates 
squirrels live in trees squirrels live in forest 
cars drive on streets  

Fig. 1. Web of associations between words in Table 1.  

Table 2 
The four word pairs that increased or decreased the most in similarity between 
each level, with each word’s parts of speech (POS) and each word pairs’ change 
in cosine similarity between levels ( cos). Matching part-of-speech in bold.        

levels word 1 word 2 POS 1 POS 2 cos  

1 to 2 focusing derived v., adj. v., adj. +0.95  
searching associated v., adj. v., adj. +0.93  
focused emerging v., adj. v., adj. +0.92  
perched emerged v. v. +0.92  

clerk local n., v. n., adj. −0.37  
manager main n. n., adj. −0.37  
operator entire n. n., adj. −0.37  
truth outer n. adj. −0.37  

2 to 3 beings accord n. plural n., v. +0.55  
course cent n., v., adv. n. +0.50  
lone amounts adj. n. plural, v. +0.50  
prime bye n., v., adj. exclam., n. +0.48  

eh velvet exclam. n., adj. −0.14  
huh silk exclam. n. −0.12  
creaked hemisphere v. n. −0.11  
erupted regions v. n. plural −0.11  

3 to 4 across druid prep., adv. n. +0.37  
course ought n., v., adv. n., v., adv. +0.37  
been Russians v. n. plural +0.36  
must fraction n., v. n., v. +0.36  

huh which exclam. det., pron. −0.05  
eh however exclam. adv. −0.04  
distinction nineteenth n. n., adj. −0.03  
but furthermore adv. adv. −0.03 
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represents fourth-order associations, Level 3 represents sixth-order as-
sociations, and so on. 

Note that order of association in a language is distinct from orders of 
approximation to a language. Orders of approximation is a measure of 
how closely a probability model approximates a language as measured 
by the number of words that are taken into account when predicting the 
next word in a sequence (Shannon, 1951). Depending on the size of the 
HHM context window, we use up to 5, 10, or k preceding words to 
predict a word as well as up to 5, 10, or k of the succeeding words, 
where k is the length of the sentence. As such, HHM could be described 
as a 5th, 10th, or kth order approximation to English. Independent of 
this parameter is the order of association. In this paper, we explore 
using up to eighth-order associations. Order of approximation and as-
sociation interact, such that higher orders of approximation (i.e., larger 
context windows) are more useful in a model sensitive to higher orders 
of association. 

3. Simulations and experiments 

We test two hypotheses:  

1. Level 2 (fourth-order associations) or higher levels of the 
Hierarchical Holographic Model (HHM) significantly outperform 
Level 1 (second-order associations) on tests of correlates of syntactic 
knowledge.  

2. Whereas second-order associations are semantic in character, 
fourth-order associations or higher provide knowledge that is pri-
marily part-of-speech or a word’s syntactic type. 

We contrast the two hypotheses with two alternatives:  

1. Fourth-order associations or higher do not improve performance on 
tests of correlates of syntactic knowledge. 

2. Fourth-order associations or higher merely provide additional lex-
ical semantic knowledge, such that given more data, a model sen-
sitive only to second-order associations would discover the same 
word relationships. 

To test these hypotheses, we begin by validating HHM as a model of 
orders of association. We show that HHM works as intended and is able 
to detect fourth-order associations in a small artificial data set (Section  
3.1). 

To demonstrate that higher-order associations are lexical syntactic 
in character, we investigate the relationship between higher-order as-
sociations and part-of-speech (Experiment 1). 

However, part-of-speech provides only a coarse-grained analysis of 
the types of words in English. Conversely, Combinatory Categorical 
Grammar (CCG; Steedman & Baldridge, 2011) postulates hundreds of 
different word types. In CCG, a word type captures what types of 
phrases the word may combine with to the left or to the right (and the 
associated semantic operations). Thus grammatical information is 
stored along with the word in the lexicon, providing fine-grained in-
formation about how each word is used. The theory proposes a very 
limited set of syntactic and semantic operations in parsing and sentence 
production that is parameterized for the specific language. CCG is a 
broad-coverage formalism that allows us to study the granularity of 
grammatical information that might be represented in the vectors 
generated by higher-order associations (Experiment 2). 

While comparisons between HHM, part-of-speech, and CCG types 
are illuminating, part-of-speech and CCG are theories of language, not 
language itself. To evaluate the role of higher-order associations in 
producing grammatical sentences, we situate HHM’s word representa-
tions in a simple exemplar model that operates on sentences. We use a 
word ordering task where the exemplar model must order a given set of 
words into a grammatical sentence. By varying the level of HHM used 
by the exemplar model, we investigate the effect of higher-orders of 

association and n-gram size on the ability of the model to find the 
grammatical ordering of the words (Experiment 3). 

Chomsky (1956) famously gave “Colorless green ideas sleep fur-
iously” as an example of a sentence that is grammatical but mean-
ingless. If the sentence is truly meaningless we would expect second- 
order (semantic) associations to be insufficient for finding the gram-
matical ordering of the words colorless, furiously, green, ideas, and sleep. 
However, if fourth-order associations are syntactic in character, we 
should expect to find that the exemplar model can find the grammatical 
ordering of the words using representations from HHM Level 2 (Ex-
periment 4). 

Through these simulations and experiments, we seek to demonstrate 
the validity of HHM as a model, HHM’s relationship to established 
theories of syntax, and the role of higher-order associations in con-
structing grammatical sentences. Code for running HHM1,2 and the 
exemplar model is available online, along with data and figures.3 

3.1. Small example on artificial data 

Here we show that HHM is able to detect higher-order associations 
as intended. For the purposes of providing a clear illustration of the 
behavior of the model, we use a small artificial data set that provides a 
clean example of first-, second-, and fourth-order associations. The data 
set consists exclusively of the sentences in Table 1. This is merely a toy 
example, but useful for demonstrating how the model works. This ex-
ample has been designed such that the word pairs soar and fly, over and 
above, and trees and forest, have second-order associations, whereas the 
word pair eagles and birds, have a fourth-order association. 

HHM was run with 1024 dimensional vectors and three levels of 
representations. In the nine sentences of this example, there are 21 
unique words, and thus 210 unique pairs of words. We can characterize 
the behavior of HHM by how the word pairs change in similarity across 
levels. 

Fig. 2 shows cosine similarity between the word pairs as a function 
of level of representation in HHM. Of the 210 word pairs, we graph the 
24 word pairs that have non-negative similarity by Level 3. Of those 24 
pairs, we label and rank the 10 pairs with the most similarity, from over 
above (cosine = 0.70 at Level 3) to over in (cosine = 0.20 at Level 3). 
Word pairs with fourth-order association are in bold and word pairs 
with strong second-order association are in italics. 

The memory vectors for words with second-order association are 
close on Level 1 (e.g., soar and fly, cosine = 0.51) and closer by Level 3 
(cosine = 0.67). The words eagle and bird, which have only fourth- 
order association, are unrelated on Level 1 (cosine = −0.01) but are 
the fifth most similar word pair by Level 3 (cosine = 0.33). 

The results provide a simple example of the effect of the higher 
levels. Each memory vector at Level 1 is constructed as a sum of con-
volutions of environment vectors. As such, the memory vectors at Level 
1 encode first-order associations with respect to the environment vec-
tors, measuring the frequency with which each word co-occurs with 
other words and sequences of words. The cosines between memory 
vectors are a measure of second-order association, the degree to which 
the two words co-occur with the same words. The algorithm that pro-
duces Level 1 transforms data that captures first-order association (co- 
occurrence) into data that captures second-order associations. The al-
gorithm is a step, and by repeating it to produce higher levels, we can 
build a staircase. 

Level 1 of the model cannot detect associations higher than second- 
order. A pair of words with third-order association or higher, but not 
first or second, do not appear together in the same sentence and do not 
co-occur with the same words. As such, the memory vectors for a pair of 

1 https://github.com/ecphory/BEAGLE-HHM. 
2 https://github.com/moojan/Python-BEAGLE-HHM. 
3 https://github.com/ecphory/Indirect-Associations. 
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words with only third-order or higher association will be constructed 
from disjoint sets of vectors. At Level 1, m1,eagles is a sum of convolutions 
of e e e, ,1,soar 1,over 1,forest, whereas m1,birds is a sum of convolutions of 
e e e, ,1,fly 1,above 1,trees. As Level 1 environment vectors are approximately 
orthogonal, the memory vectors constructed from them will also be 
approximately orthogonal. As a result, m1,eagles and m1,birds are ap-
proximately orthogonal (cosine = −0.01). 

But at higher levels, the environment vectors are no longer ortho-
gonal because the environment vectors for Level 2 are the memory 
vectors for Level 1. As a result, e2,soar is similar to e2,fly (cosine = 0.51), 
e2,over is similar to e2,above (cosine = 0.46), and e2,forest is similar to e2,trees
(cosine = 0.43). Even though m2,eagles and m2,birds are still constructed 
from disjoint sets of environment vectors, because the vectors that they 
are constructed from are similar, m2,eagles and m2,birds are somewhat si-
milar (cosine = 0.20). 

Because the Level 2 environment vectors are more similar to each 
other than the Level 1 environment vectors, the memory vectors for the 
pairs soar and fly, above and over, and forest and trees are also more 
similar at Level 2 than at Level 1 (see Fig. 2). As a result, the Level 3 
environment vectors for the three word pairs will be more similar at 
Level 3 than Level 2, which drives up the similarity between eagles and 
birds (cosine = 0.33). Eventually, at even higher levels, each pair soar 
and fly, above and over, and forest and trees will converge approximately 
to a point (cosine 1), causing eagles and birds to converge as well. The 
similarity between eagles and birds will never exceed the similarity 
between the three words pairs that the fourth-order association is 
contingent upon because it is the strengthening of those second-order 
associations that drives the strength of the fourth-order association. 

3.2. Training the model 

We train HHM on the Novels Corpus from Johns, Jones, and 
Mewhort (2016) with 10,238,600 sentences, 145,393,172 words, and 
39,076 unique words. HHM reads the corpus one sentence at a time. 
Within each sentence, HHM uses a moving window centered on a target 
word. Within the window, all n-grams that include the target word, 
from bigrams up to n-grams of window width, are encoded as con-
volutions of environment vectors and summed into the target word’s 
memory vector. We use 1024 dimensional vectors and four levels of 
representations, where Level 1 is sensitive to second-order associations, 
Level 2 to fourth-order, Level 3 to sixth-order, and Level 4 to eight- 
order. 

At each level of HHM, we experiment with four maximum n-gram 
sizes:  

1. 5-gram HHM: an 11 word window (5 words to the left and right of 
the target) where the model learns all 2- to 5-grams in the window,  

2. 11-gram HHM: an 11 word window where the model learns all 2- to 
11-grams in the window,  

3. 21-gram HHM: a 21 word window where the model learns all 2- to 
21-grams in the window, and  

4. Sentence HHM: a sentence-length window, where the model learns 
all bigrams to sentence length n-grams in the window. 

For all models, the window cannot cross sentence boundaries (e.g., 
in a five-word sentence, the 21-gram HHM uses a five-word window). 
Note that for the 5-gram HHM, the maximum n-gram size (5) is distinct 
from the window size (11), whereas for the three other models the 
window size is also the maximum n-gram size. We consider large 
window sizes to account for human sensitivity to long-range de-
pendencies in language, though given that humans can, in principle, be 
sensitive to arbitrarily long-range dependencies, we consider the fixed 
context window to be an approximation (see §5.2 for discussion). 

We use the four HHMs for the following experiments. 

3.3. Experiment 1: part of speech 

If higher-order associations are useful for knowing how a word can 
be appropriately used in a grammatical sentence, we should expect to 
see that higher orders of associations enhance the sensitivity of the 
model to measures of how words are used. In this section, we explore 
correlations between HHM’s representations and part-of-speech (noun, 
verb, adverb, adjective, etc.). In the next section, we examine the cor-
relation between HHM’s representations and the syntactic types pro-
posed by Combinatory Categorical Grammar (CCG; Steedman & 
Baldridge, 2011). 

Using WordNet (Princeton University, 2010) and the Moby Part-Of- 
Speech List (Ward, 1996), we assign a set of part-of-speech tags to each 
word in the 39,076 word vocabulary. We use similarity between words 
that are the same part-of-speech as a proxy measure for knowledge that 
those words can be used in similar ways. 

Properly speaking, part-of-speech is a theory of language, rather 
than a behavioral phenomenon, and as such, a cognitive model of 
language use need not account for part-of-speech as long as it can ac-
count for how humans produce and comprehend sentences. 
Nevertheless, looking at the relationship between the representations of 
HHM and part-of-speech categories can illustrate the effect of the 
higher levels of the model. 

Here we analyze the 11-gram HHM, as it is the model with the 
highest correlation to CCG types in Experiment 2. However, we in-
spected other windows sizes for this analysis and did not observe sub-
stantive differences. To examine the effect of higher-order associations, 
we compare Levels 1 and 2 (i.e., second- vs fourth-order associations), 
Levels 2 and 3 (i.e., fourth vs sixth), and Levels 3 and 4 (i.e., sixth vs 
eighth). 

To provide clear examples of higher-order associations and their 
relationships to part-of-speech, we limit our intial analysis to words 
with at least 1000 occurrences in the corpus, as these words have the 
most robust vector representations. While the part-of-speech of some 
words (e.g., manager, a noun) may be easy to learn from only a few 
examples, words with more flexible part-of-speech (e.g., course, which 
can be used as a noun, verb, or adjective) may require more examples to 
learn all the ways in which the word can used, particularly if one of the 
uses is obscure (e.g., entire, n., an uncastrated horse). We also limit our 
initial analysis to the 500 unique word pairs that increase or decrease in 
similarity the most between levels. By unique, we mean that we select 
word pairs where neither word in the pair is present in any of the other 
500 word pairs to ensure statistical independence. 

By limiting our analysis in these ways, we focus on unambiguous 
examples of relationships between words that are affected by fourth- 
order associations. However, by limiting our analysis, we limit the 
scope of our conclusions in this analysis to high-frequency words and 
strong associations. As such, we also conduct more general analyses in 

Fig. 2. Cosines between word pairs across levels.  
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this and later sections. 
To illustrate the nature of higher-order associations, the word pairs 

that changed the most in similarity between pairs of levels are shown in  
Table 2. The word pairs that increase the most from Level 1 to 2 can be 
understood as the most pure examples of words with fourth-order as-
sociations but no second-order associations. For example, focusing and 
derived have a cosine of −0.10 at Level 1, indicating no second-order 
association, but have a cosine of 0.86 at Level 2, indicating a strong 
fourth-order association. Likewise, the word pairs that increase the 
most from Level 2 to 3 can be understood as the most pure examples of 
sixth-order associations, and from Level 3 to 4, eighth-order associa-
tions. 

We can see in Table 2, that the four word pairs that increase the 
most in similarity from Level 1 to 2 are unrelated in meaning, which 
suggests that second-order associations are sufficient for semantics. 
However, the top four word pairs that increased the most in similarity 
from Level 1 to 2 each have exactly matching part-of-speech. While the 
words focusing and derived are unrelated in meaning, they are both ty-
pically verbs that can also be used as adjectives (e.g., a focusing lens or a 
derived equation). Likewise, focused and emerging can both be used as 
either an adjective or a verb. 

By contrast, from Level 3 to 4, the word pair that increases the most 
in similarity is across and druid, which has neither meaning nor part-of- 
speech in common. The word pairs that increase and decrease the most 
from Level 3 to 4 suggest that Level 4 may not provide useful linguistic 
information. 

From Level 1 to Level 2, the three word pairs that decrease the most 
in similarity have partially matching part-of-speech: clerk and local can 
both be used as nouns (e.g., local in the sense of a local union branch), as 
can manager and main (e.g., main as in a water main), and operator and 
entire (i.e., entire as in an uncastrated horse). However, the use of local, 
main, and entire as nouns is highly infrequent, whereas each is com-
monly used as adjectives. As such, these three word pairs are better 
understood as examples of mismatching part-of-speech (nouns vs. ad-
jectives). Because a partial part-of-speech match is not indicative of the 
relative frequency of the multiple uses of the word, it is difficult to 
interpret whether a partial match is more like a match or a mismatch. 
Thus, we focus our analysis on exact matches. 

For the 500 word pairs that increased or decreased the most in si-
milarity between each level, Fig. 3 shows how many are exact part-of- 
speech matches, partial matches, or have mismatching part of speech. 
In total, 13% of all words pairs in the lexicon are exact part-of-speech 
matches. Among the 500 unique word pairs that increased the most 
from Level 1 to Level 2, there are significantly more (18%) exact 
matches than would be expected in a random sample of word pairs 
( <p 0.01). Of the 500 unique word pairs that decreased in similarity 

the most from Level 1 to 2, 9% are exact matches (e.g., both great and 
stranger can be used as an adjective and a noun), which is significantly 
fewer than expected in a random sample ( <p 0.01). 

However, from Level 2 to 3 and from Level 3 to 4, significantly more 
exact matches than expected in a random sample are among the top 500 
word pairs that decrease the most ( <p 0.0001). From Level 3 to 4, 
significantly fewer exact matches are among the 500 word pairs that 
increase the most ( <p 0.0001). 

The reversal suggests that fourth-order associations are sufficient to 
discover most exact part-of-speech matches. Indeed, from Level 2 to 3, 
among the 500 word-pairs that decrease the most, the exact matches 
have a mean decrease in similarity of 0.00, with a mean cosine of 0.90 
between the words at both Levels 2 and 3. Likewise, from Level 3 to 4, 
the mean decrease in similarity is 0.00 for exact matches, with a mean 
cosine of 0.98 at both Levels 3 and 4. The exact matches are already 
highly similar by Level 2 and remain highly similar at Levels 3 and 4, 
and as such their similarity is increased little by sensitivity to sixth- and 
eighth-order associations. 

Our analysis thus far has focused on a highly select sample of the 
corpus: words that occur at least 1000 times and word pairs whose 
similarity changes dramatically between levels. For the purposes of a 
more general analysis, we test the ability of HHM to classify the parts- 
of-speech of all words that occur in the corpus at least five times. 
Among the 37,543 words that occur at least five times, there are 104 
unique sets of part-of-speech tags. We construct a prototype for each 
part-of-speech tag set as a sum of the vectors for each word that has the 
exact same tag set. We then classify each word in the lexicon according 
to the closest prototype, as measured by cosine similarity. 

As shown in Fig. 4a, at Level 1, 20% of words are closest to the 
prototype that matches the word’s parts-of-speech. Classification ac-
curacy modestly improves at Levels 2 (22%) and 3 (23%) before de-
clining at Level 4 (19%). Accuracy is not high, however, as there are 
104 part-of-speech prototypes, chance classification accuracy is at 1% 
correct. 

We re-run the classification only using each word’s most frequent 
part-of-speech tag in the corpus. We identify the dominant tag using the 
Stanford Log-Linear Part-of-Speech Tagger (Toutanova, Klein, Manning, 
& Singer, 2003) from the Stanford CoreNLP package (Manning et al., 
2014).4 Again, we exclude words that occur less than five times in the 
corpus, as well as words with unique part-of-speech tags (e.g., the word 
“to” is the only word assigned the tag “TO”) for a total of 37,539 words 
and 29 part-of-speech tags. We compute a prototype for each of the 29 
tags and assign words to the closest tag. Chance classification accuracy 
is 3%. 

As shown in Fig. 4b, at Level 1, 53% of word are classified correctly. 
Accuracy increases to 62% at Level 2, plateaus at Level 3 (61%) and 
decreases at Level 4 (58%). Misclassifying nouns and adjectives as each 
other is the largest single source of classification errors at Level 1. At 
Level 1, 14% of all classifications are errors from confusing nouns and 
adjectives, compared to only 5% of all classifications at Level 2. The 
gain in classification accuracy from Level 1 to 2 is mostly due to cor-
rectly distinguishing adjectives and nouns. Conversely, confusing sin-
gular and plural nouns is a source of error across all levels (7% of all 
classifications at Level 1 vs. 10% at Level 4), likely due to HHM’s in-
sensitivity to case marking (see §5.4 for discussion). 

In summary, strong fourth-order associations (Level 2) strengthen 
similarities between words with matching part of speech and weaken 
similarities between words with mismatching part of speech. However, 
sixth- and eighth-order associations (Levels 3 and 4) do little to further 
increase similarity between words with the same part-of-speech, and 
eight-order (Level 4) associations may even obfuscate part-of-speech 
information. 

Fig. 3. 500 unique word pairs that increased/decreased the most in similarity 
at each level, categorized by part-of-speech match. 4 https://stanfordnlp.github.io/CoreNLP/. 
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3.4. Experiment 2: combinatory categorical grammar 

Part-of-speech categories (nouns, verbs, adjectives, adverbs) pro-
vide a coarse-grained analysis of how words are used in English. 
Combinatory Categorical Grammar (CCG; Steedman & Baldridge, 2011) 
is a theory of grammar that provides a more fine-grained analysis of 
how words are used. 

In CCG, sentences are constructed by combining words using a small 
number of very simple rules. The complexity of language arises not 
from the complexity of the rules, but from the complexity of the words 
in the language. In CCG, there are hundreds of types of words, and the 
type of the word determines how it can be combined with other words. 

The high dimensional space of HHM provides a rich representation 
of how a word is used in language. As such, correlation between HHM 
space and CCG type may be more informative than correlation between 
HHM space and part-of-speech categories. 

To classify the words in HHM by CCG type, we use the Switchboard 
Corpus (Godfrey, Holliman, & McDaniel, 1992). The Switchboard 
Corpus is a collection of 2500 telephone conversations. The syntactic 
structure of the corpus has been annotated using CCG (Reitter, 
Hockenmaier, & Keller, 2006). There are 10,256 unique words in the 
corpus. Of those words, we use the 8768 words that are also in the 
Novels Corpus. Just as a word can be both an adjective and a verb, a 
word can have multiple CCG types. To represent the CCG type profile of 
a word, we represent each word in the Switchboard Corpus by a vector 
of 357 dimensions, one dimension for each CCG type in the corpus, 
where the value in each dimension is a count of the number of times 
that word appears as the given CCG type in the corpus. 

The CCG type vectors define similarity relationships between the set 
of 8768 words. We compute a 8768 x 8768 similarity matrix by taking 
the cosine of each pair of vectors. To compare relationships in CCG 
space to relationships in HHM space, we also compute a 8768 x 8768 
similarity matrix for each level of HHM. To measure the correlation 
between CCG space and HHM spaces, we use Spearman’s rank corre-
lation coefficient, which is a non-parametric measure of monotonic 
(linear or non-linear) relationships in data. 

We compute the Spearman’s correlation between the CCG cosine 
matrix and the cosine matrix for each level of HHM. Fig. 5 shows the 
correlation for each Level of HHM and each maximum n-gram size. The 
11-gram HHM achieved the highest correlation with CCG types across 
all levels, peaking at Level 3 with a correlation of 0.382. 

A correlation of 0.382 is not especially high, but it is worth noting 
that a low correlation does not indicate that HHM is wrong or that CCG 
is wrong. HHM’s representations contain semantic information that 
CCG types do not contain. Likewise, CCG types may contain some 
particulars of syntax that it may be difficult for HHM to learn from a 
corpus using a sliding context window (see §5.2 for a discussion of 

using a memory model instead of a fixed window). Other differences 
may arise simply from how words are used in the Switchboard Corpus 
versus the Novels Corpus. 

HHM’s correlation to CCG is worse when the model includes up to 
21-grams or full-sentence-grams, or when restricting the model to 5- 
grams. Larger n-grams are not always better: as larger n-grams are more 
unique, they may be less useful for making inferences about new sen-
tences. 

We see the same pattern across the four levels for the 11-gram, 21- 
gram, and full-sentence HHM, with increasing correlation until Level 3, 
and then a decrease at Level 4. Though correlation to CCG types is 
lowest at Level 1 for all models, the increase in correlation is modest, 
indicating that Level 1 can account for much of the information cap-
tured by CCG types. 

The 5-gram model does not replicate this pattern of correlation, 
which we attribute to differences in how the 5-gram model is con-
structed. Whereas the other models compute all n-grams within the 
window, the 5-gram model computes only 2 to 5-grams within an 11- 
word window. The dissociation between window size (11) and maximum 
n-gram (5), appears to produce a different behavioural profile than when 
window size and maximum n-gram size are scaled together, though we 
do still see a general upward trend in correlation at higher levels. The 5- 
gram model is essentially just the 11-gram model with the 6- to 11-grams 
removed, as both models look forward and backward 5 words from the 
target word. However, the 5-gram model’s correlation to CCG types is 
lower than the 11-gram model at all levels, which suggests that the 6- to 
11–grams are, in fact, providing useful information about syntax, in-
dependently from the size of the context window. 

Fig. 4. Classification accuracy of words by closest part-of-speech prototype.  

Fig. 5. Spearman’s rank correlation coefficient between HHM vectors and CCG 
types. 
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In summary, higher-order associations (up to Level 3, i.e., sixth- 
order associations) improve the ability of the model to capture syntactic 
type relationships and that large n-grams, in the range from 6-grams up 
to at least 11-grams, provide useful information about the syntactic 
type of words. 

3.5. Experiment 3: word ordering task 

The real test of syntactic knowledge is the ability to form gram-
matical sentences. Do higher-order associations provide additional 
useful information about how to sequence words into a grammatical 
sentence? When given an unordered set of words that can be arranged 
into a sentence, are higher levels of HHM better able to find the 
grammatical ordering? 

We replicate a task from Johns, Jamieson, Crump, Jones, and 
Mewhort (2016). In this task, a model is given an unordered set of n 
words taken from an n-word sentence. The model must discern which of 
the n! possible word orderings is the original ordering. 

HHM is not, by itself, able to perform the word ordering task, be-
cause HHM does not operate on sentences. However, HHM’s re-
presentations contain word-level information that can be leveraged to 
perform the task when situated within a sentence-level model. We use a 
simplified version of the exemplar model used by Johns, Jamieson, 
et al. (2016). The exemplar model is provided with an exemplar set 
consisting of 125,000 seven-word sentences randomly sampled from 
the Novels Corpus. Sentences in the exemplar set have no words with 
frequency less than 300. All test set sentences and permutations thereof 
are excluded from the exemplar set. 

We embed the word representations generated by each level of 
HHM in the exemplar model. Each sentence in the exemplar set is re-
presented as a pair of vectors in the exemplar model. One vector is an 
unordered set of words constructed as a sum of HHM’s memory vectors 
representing each word in the sentence. The second vector is the sum of 
all ordered sequences of words in the sentence, from individual words 
up to 7-grams. Each sequence is constructed as a convolution of HHM’s 
memory vectors for each word in the sequence. Before use, all HHM 
vectors are normalized to a Euclidean length of one and permuted, as 
shown in Eq. 2. 

Test items are a set of 200 seven-word sentences as used by Johns, 
Jamieson, et al. (2016). Test items have simple syntactic construction 
and consist of words that occur at least 300 times in the corpus. Test 
items are presented to the exemplar model as an unordered set of 
words. 

The exemplar model first selects the exemplar sentence most similar 
to the test item, as measured by the cosine between the vectors for the 
unordered sets. Then, of the 7! possible orderings of the words in the 
test item, the model selects the ordering most similar to that of the 
selected exemplar sentence, as measured by the cosine between the 
vectors representing the ordered sequences of words. The ordering 
produced by the model is judged to be correct if it matches the original 
ordering of the words in the test item. 

We test all four versions of HHM from Level 1 to Level 3. To ensure 
that results are not contingent on a particular sample of 125,000 ex-
emplar sentences, results are averaged across 50 random samples. Mean 
percent correct across the 50 samples is shown in Fig. 6. To test for 
statistical significance across the seven conditions, we use a repeated- 
measures permutation test, a non-parametric measure (Mewhort, 
Johns, & Kelly, 2010; Mewhort, Kelly, & Johns, 2009). 

We also include a “Level 0” as a baseline for performance. Level 0 
represents individual words as randomly generated vectors and the 
sentence vectors are constructed from those vectors. In effect, at Level 
0, the model selects the exemplar sentence with the most words in 
common with the test item and applies the word ordering of the se-
lected exemplar to the test item. Level 0 provides a baseline where the 
model is sensitive to neither semantic similarity nor higher-order as-
sociations but is sensitive to word overlap between the test item and 

exemplars. Level 0 gets a mean of 35.1% correct. 
Level 1 outperforms Level 0 across all window sizes ( <p 0.0001) 

with a mean of 57.1% correct. Level 1 selects the exemplar sentence 
that has the most semantic similarity to a given test item. 

Level 2 outperforms Level 1 across all window sizes ( <p 0.001) with 
a mean of 59.2% correct, demonstrating that fourth-order associations 
contribute to the task of ordering words into grammatical sentences. 

At Level 3, performance declines for all models <p 0.0001 except 
the 21-gram HHM, for which performance does not change significantly 
from Level 2 to 3 ( >p 0.05). Here we see a significant effect of window 
size. The 21-gram HHM outperforms all other Level 3 models 
( <p 0.0001) and the 5-gram HHM performs worse than all other Level 3 
models ( <p 0.0001). 

Inspecting by hand the errors made in a single run of Level 0 and 
each level of the 21-gram HHM, we find that the pattern of errors varies 
little across levels. The Levenshtein edit distance from a produced error 
to a correct ordering has a mean of 3 at each level of the model. All 
levels occasionally suggest a grammatical ordering of the words dif-
ferent from the original ordering (e.g., “he opened the door and got up”, 
an incorrect ordering at Level 3, is grammatical even if “he got up and 
opened the door” would be a more typical sequence of actions). At 
Level 0, we found that an additional 6.5% of the 200 sentences pro-
duced were grammatical but not the original ordering. At Level 1, we 
found an additional 11.5% to be grammatical, at Level 2, an additional 
11.0%, and at Level 3, an additional 7.5%. The remaining incorrect 
orderings are ungrammatical, typically due to a misplaced word (e.g., 
“came a serious look over his face”, at Level 1, misplaces the verb came, 
or “I do not much trust you that”, at Level 2 misplaces much). 

Our results show that for the task of ordering words into gramma-
tical sentences, a model that uses fourth-order associations between 
words outperforms a model that uses second-order associations. Our 
results also show that a model that uses second-order associations or 
higher outperforms a model that only uses word overlap (i.e. Level 0). 

The results show little benefit to using a window beyond 5-grams, 
possibly because the task is restricted to constructing 7-gram sentences. 
However, the 5-gram HHM performs the worst at Level 3 and the 21- 
gram HHM performs the best, which suggests there are two counter- 
acting processes at work. At higher levels, HHM is increasingly able to 
make useful inferences about the relationships between large, low fre-
quency n-grams, while simultaneously losing the ability to make fine 
discriminations between small, high frequency n-grams. We hypothe-
size that the decline in task performance from Levels 2 to 3 is due to all 
HHMs losing the ability to make fine discriminations for small n-grams. 
Performance of HHM representations that contain larger n-grams is less 
affected as those models are simultaneously gaining an ability to better 
use those large n-grams. 

To test this hypothesis, we break down HHM into its constituent n- 

Fig. 6. Test sentences correctly ordered by model as a function of vectors used 
to represent words. 
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gram components. While the HHMs previously discussed learned 2- 
grams up to n-grams for some n, here we train each HHM on one and 
only one size of n-gram. For Level 0, we use random vectors. For Level 
1, we use Level 0’s random vectors to construct a 2-gram only HHM, a 
3-gram only HHM, etc., up to a 7-gram only HHM. For Level 2, we 
construct the HHMs out of Level 1 of the 2- to 21-gram HHM. For Level 
3, we construct the HHMs out of Level 2 of the 2- to 21-gram model. We 
use the 2- to 21-gram HHM as it is the model with the most robust 
performance across all levels on this task. 

Fig. 7 shows the percentage of test sentences ordered correctly 
across different sizes of n-gram and levels of HHM. Results are averaged 
across 10 sets of 125,000 exemplar sentences. Higher levels of the 
model are better able to use larger n-grams. Level 1 of HHM is best able 
to use 2-grams and 3-grams. Conversely, at Level 3 of HHM, the model 
is able to make use of large n-grams, but performance declines for 
smaller n-grams. Task performance at Level 2 of HHM peaks for 3- to 6- 
grams, and declines for 2- and 7-grams. Level 0 is included for a 
baseline performance of 35.1% correct. 

Fig. 7 illustrates that at higher levels, HHM progressively loses the 
ability to make fine distinctions between small n-grams as the re-
presentations for the words that compose the n-grams become in-
creasingly similar. For example, “she grinned” and “he smiled” may be 
represented by identical or nearly identical bigrams at higher levels. 
However, higher levels begin to be able to make use of large n-grams. At 
lower levels, large n-grams are unique, and thus do not provide useful 
information about the relationships between words. At higher levels, 
large n-grams are similar to other large n-grams. For example, while the 
7-gram “you are as gregarious as a locust” may occur only once in a 
corpus, at higher levels of HHM, this 7-gram comes to resemble other 7- 
grams, such as “he was as strong as an ox”. 

Correctness is a noisy metric of model skill as it is binary. We can get 
a more precise measure of model skill by using the cosine scores as-
signed to each of the 7! alternative orderings. To measure the degree of 
confidence with which the model endorses a given ordering as gram-
matical, we use the deviation of the grammatical ordering’s cosine from 
the cosines of the other orderings. The deviation is a graded measure, 
sensitive to how close the model is to wrong when it’s correct and how 
close to correct the model is when it’s wrong, giving us a better picture 
of the model’s decisions. We normalize the deviation by the standard 
deviation to control for differences in the spread of cosine values at 
different levels. 

As shown in Fig. 8, the deviations yield the same pattern of results 
as Fig. 7. The ability of the Level 1 models to discriminate between the 
correct answer and alternatives is highest for 2-grams and 3-grams and 
declines for larger n-grams. At Level 3, we observe the opposite: the 
deviation of the correct answer is highest for 7-grams and declines for 

smaller n-grams. At Level 2, deviation peaks at 5- grams, declining for 
smaller or larger n-grams. 

The results in Figs. 7 and 8 demonstrate that the higher levels of 
HHM allow for better use of large n-gram information, at the cost of a 
declining ability to make discriminations between small n-grams. Spe-
cifically, Level 1 (i.e., second-order associations) representations make 
the best use of 2-grams and 3-grams, Level 2 (i.e., fourth-order asso-
ciations) makes the best use of 4-grams to 6-grams, and Level 3 makes 
the best use of 7-grams. 

Note that none of the combined n-gram models in Fig. 6 outperform 
the 3-gram only Level 2 model or the 7-gram only Level 3 model, which 
suggests that simpler HHMs may be sufficient for the word ordering 
task. 

Accuracy on the task can be increased by using more data. By in-
creasing the size of the exemplar set from 125,000 sentences to 
500,000, accuracy for the 21-gram Level 2 HHM improves from 60% 
correct to 68% correct. 

Performance can also be improved by using a more complex model. 
Rather than selecting the best exemplar, Johns, Jamieson, et al. (2016) 
use a weighted sum of all exemplars to make word-ordering decisions. 
Each exemplar is weighted by the cosine similarity between the ex-
emplar and the unordered set of words in the test item, raised to a 
power (a fitting parameter). 

Johns, Jamieson, et al. (2016) report a best accuracy of 60% with 
500,000 exemplars, random vectors (Level 0), and an exponent of 9. We 
find a best accuracy of 76% correct with 500,000 exemplars, the 21- 
gram Level 2 HHM vectors, and an exponent of 450. However, our aim 
is not to optimize accuracy on the word-ordering task, but to illustrate 
the role of higher-order associations in constructing grammatical sen-
tences. 

3.6. Experiment 4: colorless green ideas sleep furiously 

Chomsky (1956) gives “Colorless green ideas sleep furiously” as an 
example of a sentence that is grammatically correct but meaningless. By 
contrast, Chomsky notes that “Furiously sleep ideas green colorless” is 
ungrammatical. Chomsky uses this example as an argument against 
statistical models of speech. Unless the sentence “Colorless green ideas 
sleep furiously” is part of the statistical model’s training corpus, a sta-
tistical model would neither be able to generate the sentence nor de-
termine that it is grammatical. 

Pereira (2000) demonstrates that a statistical model can, in fact, 
discriminate between “Colorless green ideas sleep furiously” and the 
ungrammatical “Furiously sleep ideas green colorless”. Pereira (2000) 
uses an aggregate bigram model that estimates the probability of each 
bigram in “Colorless green ideas sleep furiously” by using second-order 

Fig. 7. Test sentences correctly ordered as a function of n-gram size and HHM 
level. 

Fig. 8. Deviation of correct word ordering from alternatives as a function of n- 
gram size and HHM level. 
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associations to known bigrams and an expectation-maximization algo-
rithm (Dempster, Laird, & Rubin, 1997). Pereira (2000)’s aggregate 
bigram model finds that “Colorless green ideas sleep furiously” is about 
20,000 times more likely than “Furiously sleep ideas green colorless”. 

HHM is also a statistical model that can be understood as estimating 
the probability of unseen n-grams through the use of higher-order as-
sociations. Can the higher levels of HHM discern that “Colorless green 
ideas sleep furiously” is a grammatical sentence? Given the unordered 
set of five words colorless, furiously, green, ideas, and sleep, there are 5! 
= 120 possible orderings of those words. Does HHM demonstrate a 
better than chance preference for Chomsky’s grammatical but mean-
ingless ordering of the words over “Furiously sleep ideas green color-
less” or the 118 other orderings? If HHM is purely semantic and 
“Colorless green ideas sleep furiously” is a purely syntactic sentence, 
performance should be no better than chance at this task. 

We use the same exemplar model as in the previous section. To 
construct the exemplar model’s vectors, we use the 21-gram HHM. The 
exemplar model is provided a set of five-word sentences and picks the 
sentence most similar to the unordered set of words colorless, furiously, 
green, ideas, and sleep. The selected sentence’s structure is then used to 
score the 120 possible orderings. 

Mean deviation of both “Colorless green ideas sleep furiously” and 
“Furiously sleep ideas green colorless” at each level of HHM is shown in  
Fig. 9. Results are averaged across 50 different random sets of 125,000 
sentences. Error bars indicate standard error. Word orderings above 
zero are judged to be more grammatical than the mean of the 120 
possible sentence orderings and orderings below zero are judged to be 
less grammatical than the mean. 

Is “Colorless green ideas sleep furiously” more grammatical, ac-
cording to the exemplar model, than “Furiously sleep ideas green col-
orless”? To test for statistical significance, we use a repeated-measures 
permutation test. At Level 0, “Furiously sleep ideas green colorless” is 
more grammatical ( <p 0.05) whereas at Levels 2 and 3, “Colorless 
green ideas sleep furiously” is more grammatical ( <p 0.05). Given that 
the two sentences are exact reverse orderings of each other, it is not 
surprising that the model’s confidence in each sentence is roughly the 
inverse of the other’s. 

Thus, selecting exemplar sentences with words in common with the 
test set (e.g., green, furiously, etc.), as the model does at Level 0, is not 
enough to make the correct grammatical distinction. Selecting sen-
tences with similar meanings (e.g., red, angrily, etc.), as Level 1 does, is 
likewise insufficient. Higher-order associations at Levels 2 and 3, seem 
to be necessary to determine that “Colorless green ideas sleep furiously” 
is the more grammatical alternative of the pair. 

Identifying ‘Colorless green ideas sleep furiously” as the most 
grammatical ordering of the 120 possible orderings is a more difficult 
problem. Only at Level 2 does the model judge “Colorless green ideas 

sleep furiously” to be more likely than average ( <p 0.05), selecting it as 
the most likely ordering 7 times out of 50. The rate at which Level 2 
selects “Colorless green ideas sleep furiously” as the preferred alter-
native might be improved by either increasing the number of exemplars 
over the current 125,000 or by using a more sophisticated model (e.g.,  
Gulordava et al., 2018; Johns, Jamieson, et al., 2016). 

The results suggest that “Colorless green ideas sleep furiously” 
cannot be judged as grammatical by analogy to sentences with either 
the same words or words with similar meanings. However, sensitivity to 
fourth-order associations causes representations for words with similar 
syntactic type to look increasingly alike, such that “Colorless green 
ideas sleep furiously”, or adjective adjective noun verb adverb, begins to 
look like an English sentence. 

4. Other models of higher-order associations 

While we have based HHM on BEAGLE, it is possible to use other 
models to detect higher-order associations in language. 

The Associative Smoothing Network (Roberts & Chater, 2008), for 
example, is a spreading activation model that uses third-order asso-
ciations to make sentence acceptability judgments. The network has no 
inherent limitation to how far activation can spread, and so can be 
easily applied recursively to detect fourth-, fifth-, sixth-order associa-
tions and higher. 

However, for some models, there’s no trivial way to recursively 
apply the model to incorporate higher-order associations. For example, 
the word2vec neural network expects, for each word it takes as input, a 
vector that uses one-hot encoding.5 Conversely, the semantic vectors 
word2vec generates have d dimensions, where d is much smaller than 
the size of the lexicon, and each dimension is real valued and in-
dividually meaningless. 

Because semantic vectors and one-hot vectors have such different 
properties, the semantic vectors cannot be re-used as input to word2vec 
to recursively detect higher-order associations. While it’s almost cer-
tainly possible to design a neural network model of distributional se-
mantics that can be recursively applied in much the same manner as 
HHM, word2vec cannot be used to do so as standardly implemented. 

BEAGLE and HHM also have a unique property that may make re-
plicating our results with other models difficult. Other models of dis-
tributional semantics only learn relationships between pairs of words, 
whereas BEAGLE and HHM learn a relationship between a word and 
sequences of words. 

Models limited to knowing the relationships between pairs of words 
can certainly benefit from third- or fourth-order associations. The 
Associative Smoothing Network, for example, is strictly a bigram 
model, but third-order associations allow the model to make judgments 
about the acceptability of novel word pairs (Roberts & Chater, 2008). 
However, in the word ordering task, we find that improvements in 
performance at higher orders of association largely result from im-
proving the ability of HHM to make use of the information in larger n- 
grams, n 3 (see Figs. 7 and 8). 

While we are not committed to the specific implementation details 
of how the Hierarchical Holographic Model learns higher-order asso-
ciations, HHM has two desirable properties for modelling higher-orders 
of association:  

1. HHM can be recursively applied an arbitrary number of times to 
learn arbitrarily high orders of association, and  

2. HHM is able to learn arbitrarily large n-grams with linear time 
complexity and constant space complexity. 

Fig. 9. Deviation from the mean cosine score as a function of HHM level.  

5 In one-hot encoding, a vector has one dimension for each word in the lexicon. 
To represent a word, that word’s dimension is set to 1 and all other dimensions 
are set to 0. 
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5. Future work 

The Hierarchical Holographic Model (HHM) has a number of lim-
itations, namely, (1) HHM learns batch-style rather than online, (2) 
HHM’s fixed window is unrealistic, (3) HHM does not combine levels of 
representation, and (4) HHM is applied only to English. HHM also has 
possible applications beyond what we explore in this paper, such as (5) 
modelling developmental language acquisition. We discuss each avenue 
for future research in turn. 

5.1. Online learning 

HHM is not an online model of learning. HHM learns each level of 
representation sequentially. In keeping with research on the acquisition 
of first and second order associations in children and adults (McNeill, 
1963; Sloutsky, Yim, Yao, & Dennis, 2017), we would expect learning to 
happen at each order of association continuously and in parallel. 
Though we hypothesize that higher-order associations scaffold off 
lower-order associations, we hold that the scaffolding is such that 
higher-order associations are adjusted as new lower-order associations 
are learned. 

HHM may be able to learn all levels in parallel. Doing so will in-
troduce more noise into the higher levels of the model, as early on, the 
level(s) below will not have stable memory vectors yet, but over a large 
enough corpus, stable representations should emerge first at Level 1 
and then propagate upward to higher levels. 

5.2. Window size 

Humans are sensitive to long-range dependencies in language. For 
example, in anaphora resolution, readers are able to identify the re-
ferent of a pronoun such as she even over a large number of intervening 
words or sentences. Readers selectively and strategically maintain 
pertinent information in memory from much earlier in a sentence, 
paragraph, or passage (Kintsch & Van Dijk, 1978). 

We include large window sizes in our simulations as proxies for the 
capacity of memory to selectively retain long-range information. The 
sliding context window of HHM is best understood as an inexact proxy 
for the linguistic associations and dependencies available to a reader (or 
listener) when the target word in a sentence is encoded. However, 
human memory does not behave like a verbatim list of the last 21 words 
read (or heard). 

To build a more detailed model of human sentence processing, we 
would need to replace the sliding window with a model of the linguistic 
information maintained in working memory and stored in long-term 
memory, as in Kintsch and Van Dijk’s (1978) model of sentence pro-
cessing. We would also need a model of selective attention to account 
for what information is retained in long-term memory and maintained 
in working memory, as informed by the model’s experience of what is 
likely to be useful for resolving the syntax and semantics of future 
utterances. Computational, holographic approaches to modelling 
working memory (Franklin & Mewhort, 2015) and episodic memory 
(Jamieson & Mewhort, 2011) could potentially be integrated with HHM 
to provide a more detailed processing model. 

5.3. Combining levels 

Gruenenfelder, Recchia, Rubin, and Jones (2016), modeling word 
association norms, find that a hybrid model that uses both first- and 
second-order associations better matches human data. We note that on 
the word ordering task, while, on average, Level 2 with any window, or 
Level 3 with the 21 word window, produces the best results, Level 1 
often correctly ordered sentences that Levels 2 or 3 got wrong. Perhaps 
a model that uses all three levels could outperform a model that uses 
only one level at a time. A neural network model that combines input 
from varying n-gram sizes and from varying orders of association might 

be able to outperform a neural network that strictly takes traditional 
word embeddings as input. We hypothesize that human memory is able 
to use relations between concepts at varying levels of abstraction as 
needed to meet task demands. 

5.4. Other languages 

In languages with extensive case marking (e.g., Latin), case markers 
are used to indicate the part-of-speech of a word instead of relying on 
word order, as English does. To learn the case markers, HHM would 
need to either process the corpus parsed into sub-word units (e.g.,  
Cotterell & Schütze, 2015), splitting off the case marker from the root 
word, or to use non-random environment vectors that represent the 
orthography of the word, as in Cox et al. (2011). 

The utility of HHM’s sensitivity to word sequence and higher-order 
associations for modelling case-marked languages is an open question. 
Case-marked languages typically use word sequence to convey non- 
syntactic information (e.g., emphasis or new information), such that 
while preserving word order may not be important for syntax, per se, 
order remains important for conveying meaning. Thus while the type of 
information captured by HHM’s sensitivity to word sequence and ab-
stract associations may differ in case-marked languages, we expect that 
sequence and associations will still play an informative role. HHM’s 
central hypothesis is that human memory has the capacity for sensi-
tivity to abstract associations, even if those associations are potentially 
used differently across languages. 

5.5. Language acquisition 

Children acquire first-order associations earlier in development than 
second-order associations (Brown & Berko, 1960; Ervin-Tripp, 1970; 
Nelson, 1977; Sloutsky et al., 2017). Likewise, McNeill (1963) found 
that when participants are trained on a set of non-words and are tested 
with a free association task, after 20 trials of training, participants 
produce only first-order associations between the non-words, but by 60 
trials, participants produce both first- and second-order associations. 

Sloutsky et al. (2017) propose a neural network model that captures 
the gradual acquisition of second-order associations contingent on 
learning first-order associations sensitive to sequential word order, as 
well as the acquistion of order-independent first-order (syntagmatic) 
associations. Similarly, the Syntagmatic-Paradigmatic Model (Dennis, 
2004, 2005) is a computational model of human memory and language 
learning that postulates two long-term memory systems: one for se-
quences and one for (order-independent) relations, which respectively 
account for knowledge of first-order (syntagmatic) and second-order 
(paradigmatic) associations. 

According to Barceló-Coblijn, Corominas-Murtra, and Gomila 
(2012), the point at which a child transitions from speaking in utter-
ances of one or two words to speaking in full sentences is the point at 
which the child’s knowledge of the relationships between words tran-
sitions from a sparsely connected graph to a dense “small world” graph, 
typical of an adult vocabulary, where all words are several steps from 
all other words in the graph. We hypothesize that learning longer range 
connections between words is necessary to construct novel syntactic 
utterances. We speculate that a model that captures higher-order as-
sociations, such as an online variant of HHM that uses both context and 
order vectors, and is therefore sensitive to both super-paradigmatic and 
super-syntagmatic associations, may be able to account for the dy-
namics of a child’s language learning process. 

6. Conclusions 

We define orders of association and explore the hypothesis that 
higher-order associations in language capture syntactic relationships 
between words. We propose a “deep” model of distributional semantics, 
the Hierarchical Holographic Model (HHM), sensitive to higher-order 

M.A. Kelly, et al.   Journal of Memory and Language 115 (2020) 104153

12



associations. We evaluate the correlation between HHM’s representa-
tions, part-of-speech, and the lexical syntactic types of Combinatory 
Categorical Grammar Steedman and Baldridge, 2011, CCG;. We find 
that strong fourth-order associations are likely to increase similarity 
between words with the same part-of-speech and decrease similarity 
between words with mismatching part-of-speech. Fourth- and sixth- 
order associations increase correlation with CCG type relative to 
second-order (i.e., paradigmatic) associations. 

Fourth-order associations also improve the ability of HHM’s re-
presentations to order words into grammatical sentences, including 
nonsense sentences such as Chomsky (1956)’s “Colorless green ideas 
sleep furiously”. The usefulness of higher-order associations interacts 
with the window size of the distributional semantics model, such that 
larger n-grams require higher orders of association in order to con-
tribute useful information, whereas smaller n-grams are best re-
presented using lower orders of association. 

In summary, we find consistent evidence that fourth-order asso-
ciations (Level 2) provide useful linguistic information of a syntactic 
character. Conversely, the evidence is mixed for sixth-order (Level 3), 
and we find no evidence that eighth-order associations (Level 4) are 
useful for linguistic tasks. 

We hypothesize that humans are also sensitive to higher-order as-
sociations in non-linguistic domains. Humans have the ability to ab-
stract away from the specifics of an experience (i.e. episodic memories) 
to infer concepts (i.e., semantic memories) from the patterns that occur 
across multiple experiences (e.g., Hintzman, 1986). The theoretical 
claim of HHM is that the pattern inference process is recursive, such 

that human memory can also infer meta-concepts from patterns across 
concepts, and that these meta-concepts play an important role in 
human behaviour, such as language. 
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Appendix A. Encoding order with one versus two permutations 

Our approach to encoding the sequential order of words differs from Jones and Mewhort (2007). Convolution is commutative, that is, invariant to 
the sequential order of the operands, i.e., =v v v v1 2 2 1. However, the sequence of the words can be preserved by permuting each operand. Jones 
and Mewhort (2007, p.35), using a method proposed by Plate (1995, p.12), apply two different permutations to the left and right operands of 
convolution, such that P v P v P v P v( ) ( ) ( ) ( )left 1 right 2 left 2 right 1 . 

We apply a permutation only to the left operand as it is simpler and sufficient for preserving sequence: P v v P v v( ) ( )before 1 2 before 2 1. Our one- 
permutation method is isomorphic to using two permutations. Vectors constructed using one permutation will have, in expectation, the same spatial 
relationships to each other as vectors constructed using two permutations, 

P v v P v v P v P v P v P vcosine(( )* , ( )* ) cosine(( )*( ), ( )*( ))before 1 2 before 3 4 right 1 left 2 right 3 left 4

where spatial relationships are measured by the cosine similarity. Differences in the cosine similarity between the two methods will be due to small, 
zero mean variations introduced by using the Pright permutation. The isomorphism arises because convolution and permutation preserve cosine 
similarity relationships, such that =v v Pv Pvcosine( , ) cosine( , )1 2 1 2 and, 

×Pv v Pv v Pv Pv v vcosine(( ) , ( ) ) cosine( , ) cosine( , )1 2 3 4 1 3 2 4 (3) 

for any vectors v v v v, , ,1 2 3 4 and permutation P. 

Appendix B. Supplementary material 

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.jml.2020.104153.  
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