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Abstract

We demonstrate that the key components of cognitive architectures—declarative and

procedural memory—and their key capabilities—learning, memory retrieval, probability

judgement, and utility estimation—can be implemented as algebraic operations on

vectors and tensors in a high-dimensional space using a distributional semantics model.

High-dimensional vector spaces underlie the success of modern machine learning

techniques based on deep learning. However, while neural networks have an impressive

ability to process data to find patterns, they do not typically model high-level cognition,

and it is often unclear how they work. Symbolic cognitive architectures can capture the

complexities of high-level cognition and provide human-readable, explainable models,

but scale poorly to naturalistic, non-symbolic, or big data. Vector-symbolic

architectures, where symbols are represented as vectors, bridge the gap between the two

approaches. We posit that cognitive architectures, if implemented in a vector-space

model, represent a useful, explanatory model of the internal representations of otherwise

opaque neural architectures. Our proposed model, Holographic Declarative Memory

(HDM), is a vector-space model based on distributional semantics. HDM accounts for

primacy and recency effects in free recall, the fan effect in recognition, probability

judgements, and human performance on an iterated decision task. HDM provides a

flexible, scalable alternative to symbolic cognitive architectures at a level of description

that bridges symbolic, quantum, and neural models of cognition.



HOLOGRAPHIC DECLARATIVE MEMORY 4

Holographic Declarative Memory: Distributional Semantics as the Architecture of

Memory

1 Introduction

Modern machine learning techniques based on neural networks and deep learning

are implemented through algebraic manipulations of vectors, matrices, and tensors in

high-dimensional spaces. Neural networks have an impressive ability to process data to

find patterns, but they do not typically model high-level cognition and it is often

unclear how they work. Symbolic cognitive architectures, such as the widely used

ACT-R (Anderson, 2009; Ritter, Tehranchi, & Oury, 2019) can capture the complexities

of high-level cognition and provide human-readable, explainable models of behavioural

phenomena. But symbolic models scale poorly to naturalistic, non-symbolic data (such

as images) or big data (e.g., corpora with hundreds of millions of words).

Are symbolic and machine learning approaches compatible? Can they be unified?

Symbolic and neural models can be understood as theories of cognition operating at

different levels of description or analysis (see Kersten, West, & Brook, 2016, for a

discussion of levels in computational cognitive models). Is it possible to provide a

theory that bridges these two levels, a reduction of the symbolic to the neural, while

retaining the strengths and capabilities of each?

Distributional semantics models, such as word embeddings, represent concepts as

points in a high-dimensional space. Similarity between concepts is distance in that

space. Distributional models can process millions of data points to infer semantic

similarities from language data (e.g., Burgess & Lund, 1997; Griffiths, Steyvers, &

Tenenbaum, 2007; Jones & Mewhort, 2007; Landauer & Dumais, 1997; Mikolov,

Sutskever, Chen, Corrado, & Dean, 2013; Pennington, Socher, & Manning, 2014), to

infer product recommendations from patterns of user preferences (e.g., Rutledge-Taylor,

Vellino, & West, 2008), to predict human probability judgements (Bhatia, 2017), or to

predict racial and gender biases (Caliskan, Bryson, & Narayanan, 2017). Thus it has

been argued that distributional semantics models are a potentially appropriate basis for

knowledge representation in general-purpose cognitive models (Bhatia, Richie, & Zou,
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2019).

We posit that cognitive architectures, if implemented in a vector-space model,

represent a useful, explanatory model of the internal representations of otherwise

opaque neural architectures. We demonstrate that a distributional semantics model can

be integrated into a cognitive architecture. Specifically, we substitute the ACT-R

Declarative Memory (DM) for our model, Holographic Declarative Memory (HDM).

HDM is a variant of Dynamically Structured Holographic Memory (DSHM;

Rutledge-Taylor, Kelly, West, & Pyke, 2014). DSHM, in turn, is a variant of the

BEAGLE model of distributional semantics (Jones & Mewhort, 2007) generalized to

non-linguistic tasks.

HDM is a model of learning for both declarative and procedural tasks. In

ACT-R’s DM, the association strengths between items in memory are typically set by

the modeller by hand. Conversely, in HDM, the representations in memory are learned

estimates of the association strengths and conditional probabilities of stimuli in the

environment. DM scales poorly to large data sets (as we discuss in §4.1), whereas HDM

can scale from learning small, experimental data sets up to corpora representative of a

lifetime of experience. In what follows, we illustrate how memory retrieval response

time, interference between memories, probability estimation, motivation, and surprise

can be implemented by simple mechanisms in a vector space. Using these mechanisms,

we demonstrate that HDM can account for primacy and recency effects in free recall,

the fan effect in recognition, human probability judgements, and human performance on

learning an iterated decision task.

2 Cognitive Architectures and the Common Model of Cognition

Since Newell (1973) first argued that good empirical work and piecemeal

theoretical work are insufficient to achieve the goal of understanding the mind,

researchers in cognitive science have sought to develop functional, testable theories of

cognition as a whole. Cognitive architectures serve as both unified theories of cognition

and as computational frameworks for implementing models of specific experimental
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tasks. Hundreds of cognitive architectures have been developed over the past 40 years

and many have strong similarities to each other (Kotseruba & Tsotsos, 2018). The

similarities suggest an emerging consensus on the basic principles of cognition. Laird,

Lebiere, and Rosenbloom (2017) find commonalities between three cognitive

architectures, namely ACT-R (Anderson & Lebiere, 1998), Soar (Laird, 2012), and

SIGMA (Rosenbloom, Demski, & Ustun, 2016). On the basis of the commonalities,

Laird et al. (2017) propose a Common Model of Cognition. The Common Model of

Cognition is a high-level theory of the modules of the mind and how these modules

interact (see Fig. 1).

Perception
sensory cortices

Working Memory
lateral prefrontal cortex

Procedural Memory
basal ganglia

Declarative / Long Term Memory
hippocampus

Action
motor cortex

Figure 1 . The Common Model of Cognition (Laird et al., 2017) and associated brain

areas (Steine-Hanson, Koh, & Stocco, 2018; Stocco, Laird, Lebiere, & Rosenbloom,

2018). Solid arrows indicate connections that pass data between modules. Dashed

arrows indicate modulation of connections.

The Common Model of Cognition consists of perceptual and motor modules that

interact with the agent’s environment, working memory buffers which hold the active

data in the agent’s mind, a declarative or long-term memory module that holds the

agent’s world knowledge, and a procedural memory module that controls the flow of

information and evaluates possible actions (Laird et al., 2017). A large-scale evaluation

of fMRI data, collected from over a thousand participants across diverse tasks, found

correlations in patterns of activity across brain areas consistent with the Common

Model of Cognition’s description of modules and their interactions (Steine-Hanson et

al., 2018).
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To evaluate our model, Holographic Declarative Memory (HDM), we compare to

the ACT-R cognitive architecture in particular. But HDM could be used as a model of

long-term memory in any cognitive architecture described by the Common Model of

Cognition.

3 ACT-R Declarative Memory

ACT-R’s declarative memory (DM) consists of items of knowledge, called chunks,

weighted by an estimate of the probability that chunk is useful in the agent’s current

context. Each chunk is either an unordered list of slot:value pairs (e.g., “name:tiger

type:animal has:stripes”) or an ordered list of values (e.g., tiger animal striped).

In ACT-R, the agent’s current context serves as a cue to the memory system.

Chunks in memory are activated according to a combination of the chunk’s base-level

activation and spreading activation. Base level activation reflects how frequently and

recently that chunk has been accessed. Spreading activation reflects the strength of the

association between the cue and the chunk. More active memories are retrieved more

easily and quickly.

For a chunk i, the activation of that chunk, Ai, is:

(1)Ai = Bi +
n∑

j=1
WjSji

where Bi is the baseline activation of the chunk, n is the number of slot-value pairs in

the cue, Wj is the attention paid to slot-value pair j of the cue, and each Sji is an

association strength: a measure of the probability that chunk i is relevant given that

the cue contains slot-value pair j.

DM can be understood by analogy to a hydraulic system. Activation flows like

water through connections between concepts like pipes. Activation spreads from the cue

to the chunks in DM. Chunks with stronger associations to the cue (wider pipes) receive

more activation. The chunk that receives the most activation floats to the surface of

consciousness and is selected and retrieved from memory. The time, T , to retrieve a

chunk, i, is a function of the chunk’s activation, Ai, and two fitting parameters I and F ,

(2)T = I + Fe−Ai
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The higher the activation, the shorter the retrieval time.

ACT-R’s equations for activation (Eq. 1) and retrieval time (Eq. 2) form the

backbone of ACT-R’s declarative memory. They can successfully model a wide range of

behavioural phenomena, including practice and forgetting effects in learning new words

(Pavlik Jr. & Anderson, 2005), the cognitive availability of words (Cole & Reitter, 2018)

and syntactic structures (Reitter, Keller, & Moore, 2011) when producing language, and

the spread of neologisms through online communities (Cole, Ghafurian, & Reitter,

2017). ACT-R’s activation function has been related to the neurophysiology of

long-term potentiation in the hippocampus (Pavlik Jr. & Anderson, 2005) and the firing

patterns of neurons that control saccadic eye movements (Anderson, 2009, p. 131-134).

4 Representing Declarative Memory in a Vector Space

Holographic Declarative Memory (HDM) is a model of long-term memory that

can be integrated within the ACT-R cognitive architecture1. HDM uses holographic

reduced representations (Plate, 1995), a method of representing arbitrarily complex

concepts using high-dimensional vectors. Holographic reduced representations belong to

a family of methods know as vector-symbolic architectures (Gayler, 2003) or

hyper-dimensional computing (Kanerva, 2009) and are closely related to the

(low-dimensional) conceptual spaces (Lieto, Chella, & Frixione, 2017). As such, HDM

operates at a level of description that is the lingua franca of cognitive modeling (Lieto

et al., 2017), bridging symbolic (e.g., ACT-R), quantum (e.g., Bruza, Wang, &

Busemeyer, 2015), and neural (e.g., Eliasmith, 2013) models.

Unlike DM, HDM does not store chunks as discrete data structures. Instead,

HDM stores a pair of vectors for each unique value associated with a feature (e.g., black

or square, see Fig. 2). As chunks are added to HDM, the information from each

successive chunk is distributed across the relevant vectors and superimposed onto the

1 Python ACT-R (Stewart & West, 2007) can be installed from

https://github.com/tcstewar/ccmsuite. Python ACT-R with HDM can be downloaded from

https://github.com/ecphory/ccmsuite. Example HDM models can be downloaded from

https://github.com/ecphory/HDM
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information from prior chunks, such that the vectors in the high-dimensional space shift

to better represent the relationships described by all chunks stored.

In what follows, we describe first HDM’s ability to scale to big data, then the

elementary operations of HDM, and finally how those processes can be combined to

account for human memory and learning.

4.1 Scalability

HDM is more tractable than DM for scaling to large data sets in three ways: (1)

ease of training, (2) space complexity, and (3) time complexity. HDM gains scalability

by sacrificing DM’s perfect storage of each and every chunk. Given that human memory

also sacrifices precision for efficiency, we believe the tradeoff made by HDM is

reasonable as a model of human memory. However, HDM may be more appropriate for

modelling semantic or cortical memory, as opposed to episodic or hippocampal memory.

as we discuss in §9.2.

4.1.1 Ease of training. When using DM, association strengths between

chunks are typically set by hand, which is not feasible for large data sets. Conversely,

HDM automatically acquires the associations between all chunks stored in memory by

representing the relationships between values as distance in the high-dimensional space.

4.1.2 Space complexity. HDM is based on distributional semantics, and so

the original application is language. When representing the information in a corpus of

hundreds of millions of sentences, HDM needs only to store a representation for each of

the tens of thousands of unique words in the corpus’s vocabulary. More generally, the

size of HDM scales with the number of atomic components of experience (i.e., the

number of unique values) rather than with the number of experiences stored.

Conversely, when using DM with spreading activation, it is necessary to track each of

the association strengths Sji between chunks and values. As such, the size of DM scales

with the product of the number of chunks and the number of unique values. It may even

be possible to implement HDM as a model that is invariant in size, as we discuss in §11.

4.1.3 Time complexity. The compute time to add a chunk to memory in

HDM scales linearly with the number of slot-value pairs in the chunk, as we discuss in
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the next section (§4.2). The compute time for retrieval from HDM (not to be confused

with predicted response times) scales linearly with the number of unique values in

memory. Conversely, the compute time for retrieval from DM scales as a function of the

number of chunks. If the number of unique values (i.e., atomic elements of experience)

is less than the number of chunks (i.e., experiences stored), as is likely to be the case for

big data applications, HDM will be the more efficient model in terms of compute time.

4.2 Add a chunk with slots

HDM represents each slot by a permutation Pslot. Each value is represented by an

environment vector evalue and a memory vector mvalue. The process of encoding is

summarized in Fig. 2.

1. Construct chunk 
from stimulus

2. Construct queries

3. Assign 
Vectors

4. Convolve

5. Add to 
memory

color:black 
shape:square 
size:large

color:? 
shape:square 
size:large

color:black
shape:? 
size:large

color:black 
shape:square 
size:?

(Pcolor Φ)
(Pshape esquare)
(Psize elarge)

(Pcolor eblack)
(Pshape Φ)
(Psize elarge)

(Pcolor eblack)
(Pshape esquare)
(Psize Φ)

msquare mlarge

qblack qsquare qlarge

mblack

Figure 2 . Example of the process of encoding a stimulus in HDM.

The permutation for a given slot, Pslot, is initially generated randomly and then

used consistently thereafter. A permutation can be represented as a permutation

matrix, a k × k matrix of zeros with a single, randomly placed one in each row and
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column. Multiplying evalue by Pslot reorders the elements of evalue to create a unique

representation of the slot-value pair.

An environment vector evalue stands for the perceptual features of a stimulus. We

do not simulate the details of the perceptual features (but see Cox, Kachergis, Recchia,

& Jones, 2011; Kelly, Blostein, & Mewhort, 2013; Kievit-Kylar & Jones, 2011, for

models that do). Instead, environment vectors are generated by randomly sampling

from a Gaussian distribution with a mean of zero and a variance of 1/k, where k is the

dimensionality. In HDM, the dimensions are meaningless, only the relationships

between vectors are meaningful. The number of dimensions, k, determines the fidelity

with which HDM stores information, such that smaller k yields poorer encoding.

A memory vector mvalue represents the associations a stimulus has with other

stimuli in the environment. Memory vectors are constructed as HDM learns about the

world. Memory vectors are holographic in that they use circular convolution (denoted

by ∗) to compactly encode associations between values (Plate, 1995).

Each mvalue is a sum of questions to which the given value is an answer. For

example, as illustrated in Fig. 2, when a chunk representing a large black square,

“color:black shape:square size:large”, is added to HDM, mblack, msquare, and mlarge are

updated. To update mblack, the four questions “What color is it?”, “What color is the

square?”, “What color is the large thing?” and “What color is the large square?” are

summed together:

(3)qblack = qcolor:? + qcolor:? shape:square + qcolor:? size:large + qcolor:? shape:square size:large

Then to we add the queries qblack to the memory mblack:

(4)mblack,t = αmblack,t−1 + qblack

where t is the current time step and α is the forgetting rate.

Each question is represented by a cue vector, q, constructed by permuting each

evalue by the corresponding Pslot and then convolving. We use “?” to denote the

placeholder, as it functions much like a question mark. The placeholder vector is

generated randomly like an environment vector. Using the placeholder vector, Φ, the

question “What color is the large square?” is constructed as:
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(5)qcolor :? shape:square size:large = (PcolorΦ) ∗ (Pshapeesquare) ∗ (Psizeelarge)

The process of computing qblack (Step 4 in Fig. 2) may seem complex, but the cue

is efficiently constructed by HDM in O(nk log(k)) time, scaling linearly with the

number of slot-value pairs n and scaling in O(k log(k)) time with respect to the vector

dimensionality k. Linear computation with respect to the number of slot-value pairs is

achieved by taking advantage of the fact that convolution distributes over addition (i.e.,

a ∗ (b + c + d) = a ∗ b + a ∗ c + a ∗ d), such that all four of the questions that make up

qblack are computed in a single pass.

The question-based encoding used by HDM allows the model to be structured

around the atomic items of experience—values or concepts—rather than the

experiences—chunks or episodes—themselves. The encoding technique used by HDM

has proven effective as a method of modelling the semantic (Jones & Mewhort, 2007)

and syntactic (Kelly, Ghafurian, West, & Reitter, 2020) knowledge stored in the mental

lexion, but here we explore its utility as a general purpose scheme for declarative

memory.

4.3 Add a chunk without slots

To encode chunks without slots, that is, as ordered sequences of values (e.g.,

“large black square”), HDM uses the permutation Pbefore recursively to create nested

permutations. The cue vector for “What came after large and before square?” or “large

? square” is:

(6)qlarge ? square = (Pbefore((Pbeforeelarge) ∗Φ)) ∗ esquare

HDM uses skip-grams such that values in a chunk do not need to be consecutive to be

associated with each other. For example, in “large black square”, “? square” (i.e.,

“What came before square?”) is added to both mlarge and mblack.

4.4 Recall: Exact matching and partial Matching

To recall something, the request to HDM must provide a chunk with exactly one

unknown (e.g., “color:? shape:square size:large”). In exact matching, the chunk is
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represented by a cue vector corresponding to a single question (e.g., “What color is the

large square?”). In partial matching, the chunk is decomposed into all sub-questions

(e.g., “What color is it?”, “What color is the square?”, “What color is the large thing?”,

and “What color is the large square?”) and represented as the sum of those questions.

The cue vector can be constructed in the same amount of time irrespective of the

number of questions, such that exact and partial matching are equally efficient.

The memory vector that has the highest similarity to the cue vector is selected as

the response. Similarity between vectors is measured by the vector cosine, the cosine of

the angle between vectors, which is equivalent to a normalized dot product:

(7)cosine(q,mvalue) =
∑k

i=1 qimi√∑k
i=1 q

2
i

√∑k
i=1 m

2
i

where q is the cue and mvalue is a memory vector, each of k dimensions. HDM measures

the cosine similarity between the cue and the memory vector for each possible value.

Once the most similar memory vector is selected, the placeholder is replaced with the

corresponding value and the modified chunk is returned to procedural memory.

4.5 Recognition: Request with no unknowns

To recognize something, the request to HDM must provide a chunk with no

unknowns. HDM then computes the coherence of the chunk. Coherence is calculated as

the mean cosine between the memory vector for each value in the chunk and the cue

vectors for a chunk with that value substituted for an unknown. For example, the

coherence of “color:black shape:square” is:

(cosine(qcolor:? + qcolor:? shape:square,mblack) + cosine(qshape:? + qcolor:black shape:?,msquare))
2

(8)

5 Decay and the Serial Position Curve

In DM, each chunk i in memory has a base level activation Bi that decays as a

power function of the time since the chunk was last added to memory,

(9)Bi = ln(
n∑

j=1
t−d
j )
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where n is the number of times chunk i is presented and tj is the time since the jth

presentation. The rate of decay, d, is such that with d = 0 the activation of a chunk

does not decay with time, whereas higher d yields faster decay.

Conversely, HDM has association strengths, but no base level activation. The

activation of a value is a function of the distance in the high-dimensional space between

that value and a given cue. The structure of HDM commits us to representing the

availability of information in memory as entirely contingent on associations.

The serial position effect (Ebbinghaus, 1885) is the finding that when people

study a list, the items at the beginning and end of the list are remembered best. The

serial position effect is an oft-studied key finding that has shaped the development of

models and theories of human memory. The recall advantage for items at the beginning

of the list (the primacy effect) is generally attributed to participants having longer to

process and rehearse those items. There are, however, several competing theories of the

recall advantage for items at the end of list (the recency effect).

In DM, the recency effect is due to decay. In distributed processing models, such

as neural networks or holographic memory models, a recency effect can be modeled as

interference from more recently acquired information partially overwriting older

information (retroactive interference). Older information also interferes with the

encoding and retrieval of newer information (proactive interference). To account for the

recency effect, it is necessary to postulate a mechanism such that retroactive

interference is stronger than proactive interference.

The holographic memory model TODAM (Murdock, 1982) uses a forgetting

coefficient α to update memory,

(10)mi = αmi−1 + vi

where vi is the vector for a memory trace, which is equivalent to a chunk in ACT-R,

and mi−1 and mi are the memory vector before and after storage. The forgetting

coefficient α ranges from 0 to 1. Multiplying the memory store by α privileges new

information over old information, allowing retroactive interference to be stronger than

proactive interference, which produces a recency effect. If α = 0, the model has
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complete amnesia, and if α = 1, the model does not privilege more recent information

over older information.

In comparison to ACT-R, the forgetting coefficient α is inverse to the decay rate

d, such that α = 0 is equivalent to d =∞ and α = 1 is equivalent to d = 0. However,

the decay of activation over time t in ACT-R is a power function, t−d, whereas the

decay of activation in TODAM is an exponential function, αt. While on average, human

learning tends to mimic a power function (Ritter & Schooler, 2001), this may be an

artifact of aggregation. A survey by Heathcote, Brown, and Mewhort (2000) finds that

individual learning curves tend to more closely resemble exponential functions than

power functions. Additionally, while decay in ACT-R is over time in milliseconds, decay

in TODAM is properly speaking the result of interference from the addition of new

information to memory.

We use α to control forgetting in HDM. D. R. J. Franklin and Mewhort (2015)’s

holographic model accounts for both primacy and recency effects in terms of rehearsal

and interference without needing a time-based memory decay function.

D. R. J. Franklin and Mewhort’s model is a single holographic memory vector that

stores all list items. As such, all new items stored interfere with all previous items.

Conversely, HDM has one memory vector per item, such that interference occurs

only between different associations for a given item. As a result, there is less

interference in HDM than in a single vector model. This property allows HDM to better

handle big data, such as modeling language learning, but at the cost of making HDM a

less accurate model of small scale memory tasks such as list learning.

To compensate, we add a time-based decay function to HDM. Whether memories

decay with time (Ricker, Spiegel, & Cowan, 2014) or strictly due to interference

(Oberauer & Lewandowsky, 2013) is controversial. The time-based decay function in

HDM may be merely a proxy for sources of interference that have not been explicitly

modeled. Decay is implemented by adding noise over time to all memory vectors,

(11)mt = mt−1 + ηn

where m is a memory vector, t is the time in seconds, n is a random vector, and η is
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the noise coefficient. If η is zero, no noise is added and there is no decay over time. For

larger η, more noise is added per second and decay is steeper.
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Figure 3 . Example activation of a chunk over time in DM (with noise turned off) and

HDM (averaged over 10 runs).

To compare DM and HDM, we treat the coherence of a chunk in HDM as

analogous to base level activation in DM. In Fig. 3, we compare activation of a chunk

over 30 seconds in DM and HDM. The DM model has a decay rate of d = 0.5. The

random noise component of DM’s activation function is set to zero for ease of

comparison with HDM, as turning DM’s random noise on would introduce an additional

uncorrelated source of variation. HDM has dimensionality k = 64, forgetting α = 0.7,

and noise η = 3.0. The chunk is repeatedly stored in memory at random intervals

indicated in Fig. 3 by vertical lines.

Activation in DM and vector cosine in HDM are both estimates of the relevance of

a given chunk in memory to the current situation. Specifically, in DM, activation is an

estimate of the log-odds of a chunk’s relevance:

(12)A ≈ ln( p

1− p)

where A is the activation of the given chunk and p is the probability that the chunk is
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relevant. Similarly, vector cosine in HDM is an estimate of the square root of p (see §6

and Eq. 17 and Eq. 18):
(13)C ≈ √p

where C is the vector cosine between the given chunk and the cue. Accordingly, for

Fig. 3, we convert vector cosine to activation as follows:

(14)A = ln( C2

1− C2 )

We fit the HDM model to the DM model using a systematic grid search of the

parameters η and α in the ranges to η = 1 to 100 and α = 0.0 to 1.0. We average over

10 runs of the HDM model. At η = 3 and α = 0.7, HDM and DM produce comparable

activation values for the chunk over time (r = 0.59). The decay over time in HDM is

more linear than in DM because noise is added to the vectors as a linear function of

time (Eq. 11). A better fit to DM could likely be achieved by adding noise non-linearly

in a manner that mimics the DM decay function. The simplest approach to adding

noise non-linearly would be to incorporate the α parameter from Eq. 10 into the

memory update in Eq. 11, but we leave this modification to HDM for future work.

To demonstrate HDM’s forgetting parameters on human data, we model the serial

position effect. In Fig. 4, we compare two ACT-R models of the serial position effect to

human data from Murdock (1962). The two models are identical except that one uses

DM and the other uses HDM. Participants and models were presented 20 words at a

rate of one word every 2 seconds. After, participants reported back the list in any order

(free recall). For simplicity, the models did not report back the list and instead we use

the state of memory as a proxy for recall probability.

To study the list, the models stores chunks that contain pairs of items: the current

item and the previous item. There are 22 items in total: the 20 words of the list, the

start list cue, and the end list cue. There are 21 chunks, one for each pair of items:

(START 1, 1 2, ... 9 10, 10 END). In Fig. 4, the activation of a given item is calculated

as the mean of the activations of the two chunks that the item appears in (e.g., for word

6, the activation is the mean of the chunks 5 6 and 6 7 ). We divide DM activation by 4

to convert to predicted recall probability. Error bars indicate standard deviation.
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Figure 4 . Performance as a function of list position. Error bars indicate standard error

for models. Results averaged across 10 runs of each model.

To capture the primacy effect, the models use the following rehearsal strategy:

rehearse the chunk for the current and previous item of the list, then return to the start

of the list and rehearse forward as far as can be recalled.

DM and HDM use the same equation to determine time to recall a chunk.

Retrieval time T is an exponential function of Ai, the activation of chunk i,

(15)T = Fe−Ai

where F is the latency factor. For the free recall task, to prevent the models from

rehearsing through the entire 20 item list every 2 seconds during the study phase, we

use long retrieval latencies for both models.

We fit the DM model to human data by adjusting only the latency factor, while

keeping the decay rate fixed to the standard value of d = 0.5 (Anderson, 2009, p. 110),

achieving a best fit with latency F = 8.0. For HDM, we fix the dimensionality to

k = 64, as dimensionality does not change average performance (more dimensions

increases information storage capacity, which is necessary for scaling to bigger tasks).

We use a grid search to fit the parameters α, η, and F, achieving a best fit with α = 0.9,
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η = 1, and F = 0.5. While α and η serve a similar role in HDM as DM’s decay rate d,

determining if there is appropriate standard values for α and/or η, as there is for d, is a

matter for future work.

Both models strongly correlate with the human data (r = .95 for DM, r = .90 for

HDM). The results in Fig. 4 demonstrate that HDM is able to account for primacy and

recency effects, providing approximately as good a fit as DM to the serial position curve.

6 Interference and the Fan Effect

In the fan effect task (Anderson, 1974), participants study words pairs, such as

person-location pairs (e.g., hippy-park or lawyer-bank). At test, participants are

presented pairs that are either studied (targets, e.g., hippy-park) or novel (foils, e.g.,

lawyer-park) and must quickly discriminate.

The fan of a word is the number of pairs in the study set that contain that word.

For example, if there are three pairs in the study set that contain hippy (hippy-park,

hippy-bank, and hippy-store), then hippy has a fan of three. The fan effect is the finding

that, at test, participants are slower to make judgments about words with a higher fan.

If lawyer has a fan of 1 (i.e., is only in the pair lawyer-bank), then participants are

faster to make judgments about pairs that contain lawyer than they are about pairs

that contain hippy (fan of 3).

The fan effect illustrates a fundamental principle of human memory: the

availability of information in memory is an estimate of the probability that the

information is useful in the current situation. If a participant has studied 3 pairs with

the word hippy, each pair has only a 1 in 3 chance of being useful for judging a test pair

that contains hippy. Conversely, if the participant has studied only one pair with the

word lawyer, that pair has a 100% chance of being useful for judging a test pair that

contains lawyer.

DM models the fan effect by setting the association strengths between the words

in the cue and the pairs in memory to a function of the fan of each word (Anderson &

Reder, 1999). Simplifying the ACT-R equations, we find that the DM model produces a



HOLOGRAPHIC DECLARATIVE MEMORY 20

response time T in seconds that is a function of the fans fperson and fplace,

(16)T (fperson, fplace) = 0.233(fpersonfplace)1/3 + 0.845

which correlates well with human data (r = .95, see Fig. 5).

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1:1 1:2 1:3 2:2 2:3 3:3

Re
ac

tio
n 

Ti
m

e 
(s

ec
on

ds
)

Fan of Targets

Anderson (1974)

HDM

ACT-R DM

Figure 5 . Response time for targets in the fan effect task.

We model the fan effect task using HDM. Without changing any parameters in

Anderson and Reder (1999)’s model of the fan effect, the HDM model provides a good

fit to the data (r = .91, Fig. 5). Both the DM and HDM models use a latency of

F = 0.63 and no decay (i.e., for HDM, α = 1 and η = 0). HDM uses a dimensionality of

k = 256. As demonstrated by Rutledge-Taylor et al. (2014, p. 18, Fig. 4), the fan effect

is robust across variations in vector dimensionality, but reaction times are more

stochastic when using vectors with fewer dimensions (we choose k = 256 for stability).

The fan effect arises from the geometry of the vector space, as is illustrated in

Fig. 6. The memory vector for hippy, mhippy, is constructed as a sum of cues. For a fan

of 2, those cues are “Who is in the park?” and “Who is in the bank?”, respectively

represented by the chunks “? park” and “? bank” and the corresponding vectors q? park
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was obtained using the exact same values for the fitting 
parameters as Anderson and Reder’s (1999) ACT-R fan ef-
fect model. The only change was to compute activation as a 
mean of cosines, as described in the previous section.

Anderson and Reder’s (1999) model and the HDM model 
are strongly correlated,  r = 0.99. While there are slight dif-
ferences in the predictions made by the two models,  both the 
DM and HDM models are within the range of human vari-
ability for performance on this task. These results show that 
HDM replicates DM’s ability to model the fan effect,  but 
HDM does so in a radically different way: by measuring the 
cosine between vectors in a high-dimensional space.

Why does the cosine model the fan effect so well? The 
cosine acts as an estimate of the conditional probabilities 
that the Anderson and Reder’s (1999) fan effect model uses 
to compute association strengths. The memory vector for a 
concept keeps a fuzzy count of the number of times that 
concept has co-occurred with each other concept.  Taking the 
dot product of the cue with a memory vector gives you an 
estimate of the frequency with which that cue has been 
added to that memory vector, that is, the number of times 
the relationships described in that cue have occurred with 
that concept. The cosine is a dot product normalized by the 
magnitudes of the vector, which in this case, is a frequency 
normalized by the total number of instances, that is to say, 
the cosine is roughly the probability.

We can imagine all vectors in HDM as points on a n-
dimensional hypersphere. For the HDM fan effect model, 
we used 256 dimensions, but for the sake of visualization, 
imagine a 3-dimensional sphere.

Let us first consider a fan of one. Suppose the model has 
learned only one fact about the hippy, namely, the “hippy is 
in the park”. After learning this fact, the memory vector for 
hippy will be mhippy = (Pbefore Φ)*epark. The model is later 
given the cue “the hippy is in the park” during the recogni-
tion phase. To test for recognition, we take the cosine of 
mhippy with the cue q?park = (Pbefore Φ)*epark.  As mhippy = q?park 
the angle between the cue and the memory vector is zero, 
the distance between them on the surface of the hyper-
sphere is zero, and the cosine is 1.00.

Let us consider a fan of two. If the model knows “hippy is 
in the park” and “hippy is in the bank”, then mhippy is the 
sum of the park cue q?park and the bank cue q?bank,

mhippy = (Pbefore Φ)*epark + (Pbefore Φ)*ebank

In high dimensional spaces, randomly chosen vectors are 
approximately orthogonal to each other.  Let us assume that 
the cues q?bank and q?park are perfectly orthogonal. As illus-
trated in the left half of Figure 3, on the surface of the hy-
persphere, mhippy will be halfway between the two cues at a 
45˚ angle. The cosine is 0.71.

Let us consider a fan of three. If the model knows that the 
hippy is in the bank, park, and store,  mhippy will be at an 
equidistant point on the hypersphere between the cues for 
bank, park,  and store. In the fan of three, mhippy is further 
away from all the cues than in a fan of two. The angle be-
tween mhippy and any cue is 55˚ and the cosine is 0.58.

Where f is the fan, the cosine between a cue and a mem-
ory vector is f -1/2 if the vectors are perfectly orthogonal, or 

approximates f -1/2 for the random vectors used by HDM. 
Thus HDM predicts that as the fan increases, the cosine 
decreases, but by diminishing amounts with each increase in 
fan. As the fan approaches infinity, the cosine approaches 
zero. HDM makes the intuitive prediction that increases in 
the fan has a steadily diminishing effect on reaction time, 
such that knowing 100 facts about the hippy is not apprecia-
bly different from knowing 101. 

The cosine in HDM approximates the square-root of the 
probability only when the events are equiprobable.  For n 
events with frequencies v1 to vn, the cosine of event i is

                       (3)

When given events of unequal probabilities,  HDM will be-
have as if the most frequent events are disproportionately 
likely and the least frequent events are disproportionately 
unlikely. This is a testable and possibly erroneous prediction 
of HDM. The quantum probability model of human judge-
ments (Busemeyer, Pothos, Franco, & Trueblood, 2011) also 
uses vector algebra to calculate probabilities, but uses the 
square-roots of the frequencies, then squares the cosine, 
such that Equation 3 is equal to classical probability. Using 
the square-roots of the frequencies is not possible for HDM 
as it would require HDM to know a priori how frequently 
each event will occur.

Future Work and Applications of HDM
We have presented in this paper an HDM model of the fan 
effect and compared it to Anderson and Reder’s (1999) DM 
model of the fan effect. However, we have only discussed 
fitting to the reaction time of targets,  sentences presented at 
the recognition phase that occurred in the study set. Ander-
son and Reder’s (1999) model for foils,  sentences that were 
not in the study set, fails on a variant of the fan effect task 
(West, Pyke, Rutledge-Taylor, & Lang, 2010). As the foil is 
difficult to model, we leave developing an HDM model of 
the foil for future research.

At present, HDM does not model recency effects,  that is, 
more recent information is not recalled better than less re-
cent information. However,  other holographic models in the 
literature (e.g., Franklin & Mewhort, 2015; Murdock 1993) 
can account for recency effects, so such a mechanism could 
be incorporated into the model.

q?park

q?bank

q?store

mhippy

Figure 3: mhippy with a fan of 2 (left) or 3 (right).

mhippy

q?park

q?bank

cosine = vi
v1
2 +...+ vi

2 +...vn
2

Figure 6 . mhippy with a fan of 2 (left) or 3 (right). With a fan of 2, mhippy is at a

45◦angle from the cues, but with a fan of 3, mhippy is at a 55◦angle.

and q? bank. If these two questions are weighted equally, mhippy will be equidistant from

q? park and q? bank. HDM uses randomly generated vectors that are orthogonal in

expectation. If we assume the vectors are perfectly orthogonal, mhippy will be at a

45◦angle from q? park and q? bank with a cosine of 0.71. At a fan of 3, mhippy is

equidistant from q? park, q? bank and q? store with a 55◦angle and a cosine of 0.58.

As the fan increases, the angle between memory and the cue increases. For a fan

of f and perfectly orthogonal vectors, the cosine is f−1/2, i.e., the square root of the

probability of the item conditional on the cue. In the fan effect task, all pairs of words

in the study set are equiprobable. For events with unequal probabilities, we note that

for n events with frequencies v1 to vn, the cosine of event i is:

(17)cosine = vi√
v2

1 + ...+ v2
i + ...+ v2

n

Whereas the probability of event i is:

(18)probability = vi

v1 + ...+ vi + ...+ vn

As a result, the cosine underestimates the probability of low frequency events. When

making decisions from experience, people tend to underestimate the probability of rare

events (Hertwig, Barron, Weber, & Erev, 2004). Thus, the cosine’s biased estimate of

probability may support HDM’s validity as a cognitive model.
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Like HDM, quantum probability models (Busemeyer, Pothos, Franco, &

Trueblood, 2011) use the cosine between vectors to model human probability judgments.

Thus HDM can be understood as a realization of the quantum probability model of

human judgment within a cognitive architecture, as we discuss in the next section.

7 Quantum Models and Probability Judgement

The conjunction rule of classical probability theory dictates that the probability of

the conjunction of two events A and B is always less than, or equal to, the probability

of the individual events:
(19)P (A ∧B) ≤ P (A)

P (A ∧B) ≤ P (B)

Famously, Tversky and Kahneman (1983) showed that human reasoning around

probability often violates the conjunction rule. In an experiment, Tversky and

Kahneman presented participants with a story about a hypothetical person, Linda,

whose characteristics aligned her towards certain interests (like feminism) more than

others (like financial systems), such that:

(20)P (Linda is a bank teller) < P (Linda is a feminist)

Participants were then asked to evaluate the probability of various statements about

Linda. The critical comparison concerned the probability estimates of statements

“Linda is a bank teller” and “Linda is a bank teller and a feminist.” Most participants

judged the latter as more probable than the former, implying that for them:

(21)P (Linda is a bank teller) < P (Linda is a bank teller ∧ Linda is a feminist)

Tversky and Kahneman’s experiment illustrates the conjunction fallacy, the belief

that a conjunction is more probable than the constituent events. While the conjunction

fallacy is not compatible with the classical probability theory, Busemeyer et al. (2011)

argue that the fallacy is explicable through quantum probability theory. The primary

difference between the two theories is that while classical probability specifies outcomes

in set-theoretic relationships, quantum probability theory is a geometric theory which
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specifies outcomes as sub-spaces of a vector space (for a general introduction to

quantum probability theory, see Busemeyer et al., 2011).

Using quantum probability theory, a person’s knowledge of Linda can be

expressed as a vector, mLinda, and the probability of Linda being in a particular state

can be understood as the size of the projection of mLinda onto the subspace representing

a particular state. The formulation of probability in terms of vectors allows for the

conjunction fallacy to emerge.

For example (Fig. 7), if we take a projection of mLinda onto the vector for bank

teller, mbankteller, we would expect to get a very small shadow (pLinda→bankteller)

indicating a low probability of Linda being a bank teller. The projection of mLinda onto

the vector representing feminist, mfeminist, though is much bigger (pLinda→feminist). To get

a vector for “Linda is a feminist and a bank teller”, we take a projection pLinda→feminist

onto mbankteller to get pLinda→feminist→bankteller. As we can see in the diagram,

pLinda→feminist→bankteller is greater than pLinda→bankteller indicating a higher probability of

Linda being a bank teller and a feminist compared to Linda being a bank teller.

A"

B"AB"

AB"="Projec+on"of"A"on"B"

mLinda"

mbank"teller"

mfeminist"

origin' pLinda→bank"teller"
'

pLinda→feminist→bank"teller"
'

pLinda→feminist""

Figure 7 . Computing geometric probabilities using projections p of memory vectors m

onto other memory vectors. Human probability judgements are the squared magnitudes

of the projections, e.g., |pLinda→feminist→bankteller|2 = P (feminist ∧ bankteller|Linda).

Because of the geometric nature of quantum probability, it is trivial to implement

in vector-symbolic architectures, allowing models such as HDM to account for the

conjunction fallacy. However, HDM differs from Busemeyer et al. (2011)’s quantum

probability models in two important ways:



HOLOGRAPHIC DECLARATIVE MEMORY 24

1. HDM can learn the strengths of associations between items from experience

whereas in quantum models the vector similarities are set by hand;

2. Quantum probability models use the square root of the frequencies and the square

of the cosine to compute the exact probability, whereas HDM computes an

approximate probability (compare Eq. 17 and Eq. 18).

HDM is unable to use the square root (2) because its learns from experience (1). HDM

learns the frequencies of events as an accumulating sum. To incrementally accumulate

the square root of the frequency as a sum, rather than the frequency itself, would

require dividing the weight of each event as it is added to memory by the square root of

the frequency, and thus would require knowing the frequencies a priori.

To demonstrate the conjunction fallacy in HDM, we construct two different

models. The first model is based on Busemeyer et al. (2011)’s model of the conjunction

fallacy, and like in Busemeyer et al.’s model, the vectors are set by hand. The second

model is similar to Bhatia (2017)’s model of the conjunction fallacy, and like in Bhatia’s

model, the vectors are learned from experience.

For the first model, we conduct 100 simulations, each with a different set of

randomly generated environment vectors. The vectors mLinda, mfeminist, and mbankteller

are each constructed as a sum of environment vectors. So, if SL, SF , and SB are the

sets of environment vectors summed to construct mLinda, mfeminist, and mbankteller

respectively, the sets need to satisfy the following conditions to conform to the

geometric arrangement in Fig. 7:

i |SL ∩ SF | > |SL ∩ SB|

ii |SB ∩ SF | > |SB ∩ SL|

To realize these inequalities, the vectors are summed as illustrated in Table 1. For

example, mLinda is a sum of four unique environment vectors as well as ten environment

vectors that mLinda shares with mfeminist and three environment vectors it shares with

mbankteller, such that mLinda is more similar to mfeminist than mbankteller and non-identical
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to either. We validated the relationships by measuring the cosines of the generated

vectors (Fig. 8a).

Table 1

Unique and shared environment vectors summed into mLinda, mfeminist, and mbankteller

Linda feminist bank-teller

Linda 4 - -

feminist 10 4 -

bank-teller 3 6 4

Finally, projections were computed to reflect the probability of Linda being a bank

teller and Linda being both a feminist and a bank teller (Fig. 8b). We reproduce the

conjunction fallacy reported by Tversky and Kahneman (1983). The magnitude of the

projection of Linda onto bank teller is less than the magnitude of the projection onto

feminist and bank teller.

However, this model of the conjunction fallacy has two major problems: (1) it uses

arbitrary rather than learned vector representations for the concepts, and (2) the model

assumes that the conjunction fallacy emerges from question order effects.

When modelling question order effects, there is a clear order of operations: one

question is asked first and how the participant answers that question affects how they

answer the second question. For example, participants may be asked about honesty and

trustworthiness of the American politicians Bill Clinton and Al Gore. If asked about

Bill Clinton first, people rate Al Gore as less trustworthy than if asked about Al Gore

first (Wang, Solloway, Shiffrin, & Busemeyer, 2014). This question order effect can be

modelled by projecting from the participant’s initial belief state onto the vector

representing Bill Clinton and then onto Al Gore, or vice versa (Wang et al., 2014).

If the projection model is an appropriate model of the conjunction fallacy, we

would expect that the conjunction fallacy to be contingent on the order of the

questions, “Is Linda a feminist?”, “Is Linda a bank teller?” and “Is Linda a feminist

and a bank teller?”. Boyer-Kassem, Duchêne, and Guerci (2016) experimentally
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Figure 8 . HDM model of the conjunction fallacy using vectors artificially constructed

according to Table 1. Error bars indicate standard error over 100 runs.

manipulate the question order for the Linda story, and other scenarios that elicit a

conjunction or disjunction fallacy, and while Boyer-Kassem et al. replicate the fallacy,

they find no question order effects.

Thus, while the quantum projection model may be an appropriate model for

question order effects, another model is needed to account for the conjunction fallacy.

Aerts et al. (2017) proposes an alternative quantum model of the conjunction fallacy

that relies on the “emergence of new meanings when concepts are combined” rather

than on question order effects.

Similarly, Bhatia (2017) proposes a model where judgements about the probability

of Linda being both a bank teller and a feminist is computed as the similarity of Linda

to the sum of bank teller and feminist. By training distributional semantics models such

as word2vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014) on a large

corpus and then constructing the Linda vector using the description of Linda given by

Tversky and Kahneman (1983), Bhatia (2017) finds that the vectors for Linda, feminist,

and bank teller have the necessary arrangement for the conjunction fallacy to emerge.

Our second model of the conjunction fallacy is similar to Bhatia (2017)’s model.

We train HDM, or more specifically, HDM’s language-based precursor, BEAGLE (Jones

& Mewhort, 2007), on either the novels corpus (145 million words; Johns, Jones, &
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Mewhort, 2016) or the British National Corpus (100 million words; The British

National Corpus, 2007). We construct a vector for Linda as a sum of the memory

vectors for the words in the description of Linda and a vector for bank teller as the sum

of the memory vectors for bank and teller. For feminist, we use the memory vector for

feminist. Representing a conjunction as a sum of vectors, as Bhatia does, we find that

that for both corpora:

(22)cosine(mLinda,mfeminist + mbankteller) > cosine(mLinda,mbankteller)

Thus, a conjunction fallacy is predicted by the model (see Table 2 for cosines).

Conversely, to predict a conjunction fallacy using projection, it is necessary for the

projection of feminist onto bank teller be larger than the projection of Linda onto bank

teller, such that cosine(mfeminist,mbankteller) > cosine(mLinda,mbankteller). For BEAGLE

using either corpora, as well as for GloVe trained on English Wikipedia and the

Gigaword corpus (six billion words)2, we find the reverse: Linda is more similar to bank

teller than feminist is to bank teller, and thus no conjunction fallacy is predicted by the

projection model (see Table 2).

Table 2

Cosine similarity between vector representations generated by BEAGLE, on either the

novels corpus or the British National Corpus (BNC), or by GloVe.

vector cosines BEAGLE (novels) BEAGLE (BNC) GloVe

cosine(mLinda,mfeminist + mbankteller) 0.6795 0.7248 0.3333

cosine(mLinda,mbankteller) 0.6220 0.6418 0.2396

cosine(mfeminist,mbankteller) 0.4083 0.4586 -0.0094

We thus see that HDM can model the specific ways in which human probability

judgements depart from classical probability theory, both in question order effects,

which can be modelled using vector projection, and conjunction fallacies, which can be

modelled using vector addition. Furthermore, distributional semantics models are able

2 Pre-trained GloVe downloaded from: https://nlp.stanford.edu/projects/glove/
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to model human judgements in a range of paradigms, including predicting gender and

racial bias in the implicit association task (Caliskan et al., 2017), and answering trivia

questions (Bhatia, 2017).

8 Procedural Learning and an Iterated Decision Task

Procedural and declarative memory are often characterized as memory of how and

what, respectively. Procedural memory consists of “if condition then action” production

rules weighted by utilities that estimate how good it is to do action. Declarative

memory consists of information weighted by how useful it is to remember that

information given a cue.

At a high level of description these two systems are the same: “if cue then

information” is not much different from “if condition then action”. Chunks and

production rules are both weighted by probability estimates. Activation estimates the

probability that a chunk is useful to know and utility estimates the probability that a

production rule is useful to do.

The usefulness of knowing and doing are distinct. For example, knowing that

touching a sharp object will hurt you is useful. Touching a sharp object is not.

Nevertheless, the functional similarity between procedural and declarative memory

suggest that the same model of memory could be used to implement both systems.

While ACT-R traditionally uses the procedural memory system to model

decision-making, ACT-R can, instead, rely on declarative memory. For example,

ACT-R’s declarative memory has been used to model how humans learn to make

sequential decisions when playing simple games, such as backgammon (Sanner,

Anderson, Lebiere, & Lovett, 2000), rock-paper-scissors (Lebiere & West, 1999), and

prisoner’s dilemma (Ben-Asher, Dutt, & Gonzalez, 2013; Gonzalez & Ben-Asher, 2014;

Lebiere, Wallach, & West, 2000). One approach to using ACT-R DM to make decisions

is codified in Instance-Based Learning Theory.

Instance-Based Learning Theory (Gonzalez, Lerch, & Lebiere, 2003; Lejarraga,

Dutt, & Gonzalez, 2012) is a theory of choice based on ACT-R. In Instance-Based
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Learning Theory, instances are stored in declarative memory. Instances are specialized

chunks consisting of a choice made, the context of the choice, and the outcome. To

make decisions, an Instance-Based Learning Theory model evaluates each possible

choice by recalling from declarative memory an aggregate of the outcomes of that choice

in contexts similar to the current situation. Instance-Based Learning Theory departs

from standard ACT-R DM in two ways:

1. Instance-Based Learning Theory uses graded, partial matching of remembered

contexts to the current situation, and

2. Instance-Based Learning Theory retrieves an aggregate across stored chunks

rather than an exact stored chunk.

In this manner, Instance-Based Learning Theory is able to use declarative memory to

estimate expected utility in a wide range of choice tasks. We note that both (1) graded

similarity and (2) aggregation across instances arise inherently from the architecture of

vector-space models, such as HDM.

To illustrate how HDM can implement instance-based learning, we model a task

from Walsh and Anderson (2011). Walsh and Anderson have human participants

perform an iterated binary decision task with initially unknown payoffs (see Fig. 9).

The tasks consists of a first choice, made by pressing one of two letter keys (represented

by R and J in Fig. 9). Then an abstract cue is displayed (one of two geometric shapes,

represented by y and u in Fig. 9). After the cue, a second choice is made by pressing

one of two different letter keys (represented by T and V in Fig. 9). After the second

choice, participants receive either positive or negative feedback (represented in the

experiment by an asterisk * or hash # symbol respectively). This completes a single

trial of the task. The probability of positive feedback is contingent on the first and

second choice as well as the cue. The task is difficult to learn as optimal choices yield

only a 50% chance of positive feedback.

As shown in Fig. 10a, over 400 trials, participants gradually learn to perform the

task well. Results are from Walsh and Anderson (2011). Data is averaged over 26

participants. Error bars indicate standard error.
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Figure 9 . Iterated decision task. Figure adapted from Walsh and Anderson (2011).

Rutledge-Taylor et al. (2014) apply HDM to Walsh and Anderson’s task. HDM is

initialized to a state of optimism, the belief that all choices are potentially rewarding.

Optimism is standard in Instance-Based Learning Theory models (Lejarraga et al.,

2012, p. 3). Each possible decision in the task, decisioni, is initially associated with

positive feedback, good, by adding the chunk “decisioni good” to memory 30 times.

Rutledge-Taylor et al. (2014) find that optimism motivates the model to explore

the decision space. This is consistent with the broaden-and-build (Fredrickson, 2001)

theory of positive emotions, which holds that positive emotions broaden the repertoire

of actions considered when making decisions.

Each completed trial is represented sequentially as a chunk of the form “start

decision1 cue decision2 feedback” and added to memory. The first decision is made by

querying memory with “start ? good” and the second is made by querying with “start

decision1 cue ? good”. Both decisions use a recall with partial matching. The HDM

model learns to perform the task well at a rate similar to humans (see Fig. 10b). We

replicate Rutledge-Taylor et al.’s model here. The HDM model uses 256 dimensional

vectors. Results are averaged across 100 runs of the model.

HDM captures the general pattern of results from human participants in this task:
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Figure 10 . Rate at which humans and HDM make optimal decisions. Fig. (a) adapted

from Walsh and Anderson (2011). Error bars indicate standard error.

learning to correctly choose V is the easiest (p < 0.0001, repeated measures permutation

test), learning to correctly choose T is the hardest (p < 0.0001), and overall

performance improves from the first block of 200 trials to the second (p < 0.0001).

However, while HDM learns to correctly choose T at greater than chance

(p < 0.0001), HDM correctly chooses T in the second block of trials much less often

than human participants (64% for HDM vs. 79% for humans). Fig. 11 shows the rate at

which HDM makes optimal decisions over the 400 trials, averaged across 100 runs of the

model. Fig. 11a illustrates that after the first 50 trials, HDM’s ability to correctly

choose T does not improve further, despite performance well below 100% correct.

HDM struggles to learn to correctly choose T because, in absolute terms, given

the choice between T and V, V is more likely to yield positive feedback. Choosing T is

only correct conditional on having seen a particular cue (u, see Fig. 9). As discussed in

§6, and unlike an instance-based learning model implemented using DM, HDM

underestimates low probability events. As such, the probability of receiving positive

feedback from T will be underestimated by the HDM model.

A critical difference between procedural memory and declarative memory is that

procedural memory uses reinforcement learning. In reinforcement learning, an

association is learned as a function of how surprising it is. How surprising an
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Figure 11 . HDM response accuracy across trials, with and without discrepancy

encoding.

observation is can be measured by the magnitude of the difference between prediction

and observation. Walsh and Anderson (2011) find that human performance on the task

is consistent with temporal-difference reinforcement learning models. We hypothesize

that the performance of Rutledge-Taylor et al.’s (2014) model could be improved by

implementing surprise-driven reinforcement learning in HDM.

To implement surprise in HDM, we borrow from MINERVA-AL (Jamieson,

Crump, & Hannah, 2012), an instance-based model of associative learning.

MINERVA-AL implements surprise as discrepancy encoding: the model learns the

difference between the observed and expected outcome. To use discrepancy encoding,

we have HDM predict the next symbol at each step of the task, conditional on the

symbols seen so far. At the end of each round, the difference between the observed

sequence and the predicted sequence is added to memory. For example, if the predicted

sequence is start J y V good but the observed sequence is start J u V bad, then the

sequence of vectors added to memory is:

(23)estart, eJ, (eu − ey), eV, (ebad − egood)

With discrepancy encoding, HDM’s ability to correctly choose T improves over the 400

trials (see Fig. 11b compared to Fig. 11a) such that by the end, HDM correctly chooses

T as often as humans (80% for HDM vs. 79% for humans; see Fig. 12).
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Figure 12 . Rate at which HDM with discrepancy encoding makes optimal decisions.

Error bars indicate standard error. As in Fig. 10b, HDM uses 256 dimensional vectors

and results are averaged across 100 runs of the model.

9 Related Work

In the preceding discussion, we demonstrate that HDM can account for

interference effects in declarative memory, probability judgements, and learning an

iterated decision task. HDM is, however, part of a wider family of related models, with

broader applications to modelling language and math cognition, game-playing, and

knowledge-representation and inference. HDM is also not the only approach to

integrating modern machine learning techniques with cognitive architectures. In what

follows, we discuss models closely related to HDM and other approaches to

re-expressing cognitive architectures in a vector space.

9.1 Related Models

HDM is closely related to the following models, and as such, can replicate human

performance on the same tasks.

9.1.1 BEAGLE. BEAGLE can capture semantic similarity between words

(Jones & Mewhort, 2007) and semantic priming effects in lexical decision tasks (Jones,

Kintsch, & Mewhort, 2006). For example, people are faster to recognize the word pepper

when primed with salt. Semantic priming is predicted by the distance between

BEAGLE’s memory vectors in the high-dimensional space. BEAGLE has also been
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used for early detection of Alzheimer’s disease by identifying abnormal language deficits

(Johns et al., 2013).

9.1.2 Hierarchical Holographic Model. The Hierarchical Holographic

Model, a recursive variant of BEAGLE with multiple levels of representations, is able to

learn arbitrarily abstract relationships (Kelly et al., 2020). Sensitivity to abstract

relationships is useful for capturing sytactic similarity between words, for ordering

words into grammatical sentences, and for being able to distinguish between

grammatical and ungrammatical word orderings, even in the case of nonsensical

sentences that lack semantics. For example, both humans and the Hierarchical

Holographic Model show a preference for “Colorless green ideas sleep furiously” over

“Furiously sleep ideas green colorless”.

9.1.3 Dynamically Structured Holographic Memory. Dynamically

Structured Holographic Memory (DSHM; Rutledge-Taylor et al., 2014) can account for

the problem size effect: the finding that smaller sums (e.g., 2 + 3 = 5) are easier to

remember than larger sums (e.g., 5 + 7 = 12). DSHM is also able to account for human

decisions when playing rock-paper-scissors, demonstrating the model’s ability to adapt

quickly to rapidly changing patterns in behaviour.

9.1.4 K-HDM. K-HDM (Arora, West, Brook, & Kelly, 2018) is a variant of

HDM that incorporates an ontology proposed by Kant (1781) as a method of

representing knowledge of the world and making inferences using that knowledge.

K-HDM uses an ontology in order to better support modelling general intelligence.

Taken together with our findings, the aforementioned research demonstrates that

HDM’s algorithm, and, more broadly, distributional semantics models and

vector-symbolic architectures, are capable and versatile techniques for modelling human

learning, memory, and knowledge.

9.2 Episodic Memory

Declarative memory in ACT-R is understood as comprising both episodic and

semantic memory. Episodic memory is typically associated with the hippocampus and

semantic memory with cortical regions, such as the temporal lobe. If there is a
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computational distinction to be made between semantic and episodic memories, it is the

degree of aggregation. Recalling a specific episode or event relies on narrow focused

retrieval from a relatively small set of memories (i.e., the memories of that event),

whereas recalling a fact or meaning relies on broad focused retrieval across a large set of

memories (i.e., all memories in the agent’s lifetime related to that fact).

HDM is a modified model of the mental lexicon, though, as we demonstrate in this

paper, the approach used by HDM has broad applicability to modelling memory in

general. However, HDM may be more appropriately understood as a model of semantic

memory. A good candidate for an episode memory model is the MINERVA class of

memory models (e.g., Hintzman, 1986; Jamieson, Avery, Johns, & Jones, 2018), a

vector-based model of human memory that stores one vector for each memory trace

(i.e., ACT-R chunk) and has strong commonalities with ACT-R DM (Dimov, 2016).

To account for the full capabilities of human memory across all time scales of

learning, it may be necessary to adopt a content-addressable auto-associative memory

model to represent episodic memory (such as MINERVA) and a distributional semantics

model to represent semantic memory (such as HDM). The practical difference between

these two types of memory model is primarily the granularity of the stored

representations: an episodic memory system stores episodes, specific events that occur

in the life of the agent, whereas a semantic memory system stores concepts, which can

be understood as collections of events interrelated by a shared pattern.

9.3 Cognitive Architectures

While modern machine learning techniques have, for the most part, not yet been

integrated into cognitive architectures (Kotseruba & Tsotsos, 2018), there are some

notable exceptions. The cognitive architectures LIDA and SPAUN both take an

approach similar to HDM to model cognitive functions.

9.3.1 LIDA. The LIDA cognitive architecture (Learning Intelligent

Distribution Agent; S. Franklin et al., 2016) uses a high-dimensional vector-symbolic

model of long-term memory in order to capture the dynamics of interference and
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forgetting. Specifically, LIDA uses Sparse Distributed Memory (SDM; Kanerva, 1988),

which, like HDM, uses paired environment and memory vectors, but the vectors in SDM

are referred to as addresses and words respectively, by analogy to the Random Access

Memory. However, unlike HDM, there is not a one-to-one correspondence in SDM

between addresses and the items in the environment. Instead items are represented

distributed across multiple addresses and the corresponding words. The advantage of

this is that SDM can in principle handle environments where the items are initially

unknown, but the disadvantage is that SDM is less well optimized than HDM for a

given set of items.

SDM also encodes information quite differently from HDM. While SDM simply

stores the item itself in the word vector, HDM stores the item’s associations in the

memory vector. As a result, HDM can compactly encode a network of associations

between items, allowing it to model, for example, interference in the fan effect and the

semantics of words in natural language. That said, we believe that HDM could be

re-implemented as an SDM and that SDM is a sufficiently versatile architecture that it

could be used to account for many of the same effects as HDM.

LIDA is a symbolic architecture and thus has to translate between symbols and

vectors when storing information in SDM. Re-implementing the entirety of LIDA as a

vector-symbolic architecture (e.g., using holographic vectors) has been proposed

(Snaider & Franklin, 2014) but remains a matter of future work.

9.3.2 SPAUN. The SPAUN cognitive architecture (Semantic Pointer

Architecture Unified Network; Eliasmith, 2013), like HDM, uses holographic vectors,

but is implemented as a biologically realistic spiking neural model using the NENGO

neural modelling platform. SPAUN is a lower level cognitive architecture, concerned

with how, exactly, cognitive functions are realized by the brain. As such, SPAUN is

computationally intensive to simulate on conventional computers and is best run on

neuromorphic hardware.

While SPAUN has a robust model of procedural memory (i.e., the basal ganglia;

Stewart, Bekolay, & Eliasmith, 2012), SPAUN has yet to standardize on a model of
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declarative memory. HDM could potentially be implemented in NENGO and integrated

into SPAUN as a declarative memory system. Re-implementing HDM in NENGO

would likely require re-expressing HDM in terms of a lower-level model (see §11 for

discussion), such as a Sparse Distributed Memory (SDM; Kanerva, 1988) or a memory

tesseract (Kelly, Mewhort, & West, 2017).

10 Conclusion

Our model, Holographic Declarative Memory (HDM), realizes a fundamental

principle of human memory identified by the rational analysis of cognition. Namely, the

availability of information in memory is an estimate of the probability that the

information is useful in the current situation (Anderson & Schooler, 1991; Chater &

Oaksford, 1999). HDM realizes this principle through the geometries of the

high-dimensional vector space. This geometric property allows HDM to model both the

interference effects between related stimuli in the fan effect task and quantum

probability effects in probability judgements, such as the conjunction fallacy.

HDM is able to learn to perform an iterated decision-making task with initially

unknown payoffs at a rate comparable to human learners. To do so effectively, HDM

makes use of two mechanisms: sensitivity to prediction error and a motivation to

explore the decision space. When making choices, HDM selects the option that it

estimates as having the highest probability of positive feedback. To motivate HDM to

try unexplored options, each option is initialized to estimate a high probability of

positive feedback (i.e., HDM is optimistic).

Sensitivity to prediction error (i.e., surprise) is implemented in HDM by weighting

events more strongly in memory when the model fails to predict them. The weighting

helps HDM learn and make decisions about low probability events, improving the

model’s ability to do the decision task and improving the fit to human data.

Furthermore, HDM is able to approximate the primacy and recency effect in free

recall, demonstrating an ability to simulate forgetting caused by interference effects

from the temporal order of stimuli.
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HDM’s mechanisms of encoding, retrieval, surprise, and forgetting are intended as

architectural features of the model. Conversely, motivation (e.g., optimism) exists

outside of HDM and is implemented by the procedural memory system.

HDM is highly scalable, as the memory system is an N × 2k matrix, where N is

the total number of unique slots and values, and k is the vector dimensionality. When

training HDM on very large data sets (i.e., millions of chunks), we recommend using

thousands of dimensions to maintain encoding fidelity (e.g., k = 1024 or 2048).

However, for domains where the number of possible slots and values N that an input

can take is very large or even infinite (such as in vision), it may be necessary to adopt a

different implementation of HDM, as we discussion in §11.

An integrated theory of cognition should have both a symbolic (e.g., a description

in terms of features and values) and a sub-symbolic (e.g., a description in terms of

vector algebra) component to provide satisfying explanations. We find that

distributional semantic representations instantiated using a vector-symbolic architecture

are a natural candidate for an account of declarative memory and its learning processes,

as well as aspects of what is commonly considered procedural memory and learning.

Our intent is to advance toward a cognitive architecture that is capable of

modeling human performance at all scales of learning, from the half-hour lab

experiment to skills acquired gradually over a lifetime. By re-implementing ACT-R’s

declarative memory using distributional semantics, we create a system that can be

integrated with modern machine learning techniques in deep learning while retaining

long-term memory, single-trial learning, judgement, and other cognitive capacities

associated with high-level cognition.

11 Future Work

Since Newell (1973) first argued for the necessity of unified theories of cognition,

there has been a great deal of work in developing computational, cognitive

architectures. However, few of these architectures yet make use of modern, powerful,

machine learning techniques. The Common Model of Cognition (Laird et al., 2017)
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describes a blueprint for realizing a cognitive architecture, consisting of declarative

memory, procedural memory, working memory, perceptual systems, and a motor

module. HDM is a candidate model for realizing declarative memory, and aspects of

procedural memory, in a manner that can be integrated with other vector-based

approaches, such as deep-learning models of perception and action.

HDM, however, has two limitations as a model of cognition, both arising from the

fact that HDM stores information across a large number of discrete addresses (i.e.,

memory vectors):

1. HDM is not a good model of proactive and retroactive interference effects, as it

cannot exhibit such interference between memories that are stored in separate

memory vectors. We approximate such interference effects using a decay

mechanism, as ACT-R does, in §5. However, there is good reason to believe that

decay is merely an approximation, as experiments have shown that the magnitude

of forgetting is a function of interference rather than time (see D. R. J. Franklin &

Mewhort, 2015, for discussion and an interference-based model of the serial

position curve).

2. HDM assumes that the perceptual environment can be tokenized into a finite set

of items, each of which is assigned a memory vector. While this assumption works

well for language, which can be tokenized into words without difficulty, the

requirement limits the ability of HDM to model other, more complex

environments with continuous-valued inputs.

Given these limitations, HDM is best understood as a high-level model of how

declarative memory is implemented in the brain. HDM could be realized in a lower-level

model that does not make the simplifying assumption of one memory vector per item,

such as a Sparse Distributed Memory (SDM; Kanerva, 1988) or a memory tesseract

(Kelly et al., 2017). Such a lower-level re-implementation of HDM would allow

proactive and retroactive interference to emerge between unrelated items, causing

temporal order and serial position effects. Furthermore, relaxing the assumption of one
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item per memory vector would allow HDM to operate in complex environments that

cannot be easily tokenized into items. Thus, both of the limitations of HDM can

potentially be addressed using a more complex, lower-level architecture.
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